
Oracle® Rdb for OpenVMS

Table of Contents
Oracle® Rdb for OpenVMS..1

Release Notes...2

July 2013..3

Contents...4

Preface..5

Purpose of This Manual...6

Intended Audience..7

Document Structure..8

Chapter 1Installing Oracle Rdb Release 7.2.5.3..9

1.1 Oracle Rdb on HP OpenVMS Industry Standard 64..10

1.2 Requirements...11
1.2.1 Ensure No Processes Have RDMSHRP Image Activated..11

1.3 Intel Itanium Processor 9300 "Tukwila" Support..13

1.4 Maximum OpenVMS Version Check...14

1.5 Database Format Changed...15

1.6 Using Databases from Releases Earlier than V7.0...16

1.7 Invoking the VMSINSTAL Procedure...17

1.8 Stopping the Installation..18

1.9 After Installing Oracle Rdb...19

1.10 VMS$MEM_RESIDENT_USER Rights Identifier Required..20

1.11 Installation, Configuration, Migration, Upgrade Suggestions..21

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.2.5.3..24

2.1 Software Errors Fixed That Apply to All Interfaces...25
2.1.1 Corrupt SORTED RANKED Index After Row INSERT...25
2.1.2 Node Failure May Cause DBRs to Hang..26
2.1.3 Session Crash if Run Time Routine Native Compiler Enabled..26
2.1.4 ACCVIO In COSI_MEM_GET_VM64_2...26

Oracle® Rdb for OpenVMS

i

Table of Contents
2.1 Software Errors Fixed That Apply to All Interfaces

2.1.5 Unexpected Loop During Query Optimization...27
2.1.6 Unexpected Bugcheck During Query Execution at
 RDMS$$SET_USED_OR_DESCENDANTS...27
2.1.7 Wrong Result When Constant Boolean Appears in Predicate..27
2.1.8 Query With Zig−zag Match Strategy Returns Wrong Result...29
2.1.9 Unexpected Bugcheck When Altering a LIST Storage Map..29
2.1.10 Oracle Rdb Monitor Log File Shows Inconsistent PIDs When Accessing a Database From
 JAVA..30
2.1.11 New Error Message − ABMCHNFUL...31

2.2 SQL Errors Fixed...33
2.2.1 Unexpected Support of NOT NULL Syntax for COMPUTED BY Columns..............................33
2.2.2 Unexpected Behavior of SET DISPLAY CHARACTER SET Statement...................................33
2.2.3 Unexpected Stall When Calling External Routines..34
2.2.4 Unexpected Query Error COSI−F−INVCLADTY...35
2.2.5 Unexpected BAD_REQ_HANDLE Reported During Query Compile..35
2.2.6 Multiple Alias References Not Detected for Sequences...36
2.2.7 Unexpected RDMS−E−SEQNEXTS Error Reported When GRANT or REVOKE is Used
 on View...36
2.2.8 Unexpected SQL−F−BADCORATT Error Reported by IMPORT DATABASE.......................37
2.2.9 Rows Returned in the Wrong Order From Sorted Tactic During Bitmapped Scan......................37
2.2.10 Unexpected RDMS−E−MAPLIMITORDBAD Error After Using ALTER DATABASE ...
 DROP STORAGE AREA ... CASCADE...38
2.2.11 IMPORT DATABASE Statement Was Ignoring NOTIFY IS DISABLED Clause..................39
2.2.12 Unexpected RDB−E−INVALID_BLR Error Produced When
 ALTERNATE_OUTLINE_ID Is Active..40

2.3 RMU Errors Fixed..41
2.3.1 RMU/VERIFY/NOROOT Access Violation Verifying Client Sequences..................................41
2.3.2 Missing Delimiters in Definitions Generated by RMU Extract..43
2.3.3 Unexpected ACCVIO from RMU Load When Constraint=DEFERRED is Used.......................43
2.3.4 RMU Did Not Sufficiently Verify the Database LOGFIL Structure..44
2.3.5 RMU/BACKUP/ONLINE/NOQUIET Did Not Backup the Root Log File Entries....................46
2.3.6 Unexpected RMU−F−NOSNAPS Error From RMU Collect Optimizer_Statistics.....................48
2.3.7 Encrypted Parallel Backup Files Could Not Be Restored Or Dumped..48
2.3.8 Character Set Restriction on ORDER_BY_NAME Option Has Been Removed.........................50
2.3.9 RMU/DUMP/BACKUP Could Output Invalid Data Page TSN Numbers...................................50
2.3.10 RMU/BACKUP/PARALLEL/DISK_FILE Problem Expanding Directory Specifications.......53
2.3.11 The RMU/BACKUP/PLAN/LIST_PLAN Command Created an Invalid Backup Plan File.....54
2.3.12 Script Generated by RMU Extract Has Syntax Error in ALERT OPERATOR Clause.............57
2.3.13 RMU/LOAD Sometimes Stores Records In Overflow Partition..58

2.4 RMU Show Statistics Errors Fixed...59
2.4.1 RMU/SHOW STATISTICS (TRANSACTION DURATION (TOTAL)) Playback
 Generates a Bugcheck...59
2.4.2 %SMG−F−INVROW in RMU/SHOW STAT Using Option WRITE REPORT GRAPH or
 WRITE BOTH..59

Oracle® Rdb for OpenVMS

ii

Table of Contents
2.4 RMU Show Statistics Errors Fixed

2.4.3 Unable to Start RMU/SHOW STATISTICS During Cluster State Transition.............................59
2.4.4 Unexpected Bugcheck Dump From RMU/SHOW STATISTICS/HOT_STANDBY_LOG.......60
2.4.5 Problem Viewing RMU/SHOW STATISTICS 'LOGMINER INFORMATION' Screen............60

Chapter 3Software Errors Fixed in Oracle Rdb Release 7.2.5.2..62

3.1 Software Errors Fixed That Apply to All Interfaces...63
3.1.1 Orphan LIST Segments on Integrity Systems..63
3.1.2 Query With LIKE Clause Executes the Conjunct Twice..64
3.1.3 Query With Zigzag Match Strategy Returns Wrong Result...65
3.1.4 Zig−zag Query With Mapping Values Index Returns Wrong Result...67
3.1.5 Query Bugchecks With MAX, MIN or COUNT..69
3.1.6 Query Bugchecks When the Index is Partitioned With Descending Segment.............................70

3.2 SQL Errors Fixed...72
3.2.1 Unexpected SQL−F−PARSE_STACK_OVE Error On Repeated CREATE VIEW
 Statements...72
3.2.2 Unexpected ARITH_EXCEPT When Using STDDEV Aggregate Function..............................73
3.2.3 Unexpected Bugcheck When REVOKE Used on a Table With an IDENTITY Column............73
3.2.4 Unexpected RDB−E−NOT_VALID Error From ALTER TABLE ... ADD COLUMN..............74
3.2.5 Unexpected Partition Chosen When Malformed Storage Map Created.......................................75
3.2.6 Workload and Storage Statistics Not Cleared by TRUNCATE TABLE.....................................76

3.3 RDO and RDML Errors Fixed..77
3.3.1 GET DIAGNOSTICS Did Not Return a Valid IMAGE_NAME in Some Cases........................77

3.4 RMU Errors Fixed..78
3.4.1 RMU/BACKUP/PLAN Displays Too Vague Message When RMU_SERVICE Is Not
 Running...78
3.4.2 RMU/RECOVER/ORDER_AIJ_FILES Error Handling Problem When Ordering Files............78
3.4.3 RMU/BACKUP/PARALLEL Deadlock and Bugcheck With Access Violation.........................79
3.4.4 RMU/BACKUP/PARALLEL Plan Name Length Parsing Errors..80
3.4.5 Unexpected Bugcheck When Using RMU Collect Optimizer_Statistics.....................................82
3.4.6 Unexpected RECDEFSYN From RMU Unload...82
3.4.7 Unexpected Reset of RECORD LENGTH in AIP After RMU Repair Initialize=TSN
 Command..83
3.4.8 RMU/REPAIR/INITIALIZE=TSN Fails With SYSTEM−F−ACCVIO and Bugchecks............83
3.4.9 New Details for Space Management Output From RMU Dump Header.....................................84
3.4.10 New Option POSITION_COLUMN Added to RMU Extract..84
3.4.11 RMU/VERIFY/LAREA Access Violation if Invalid Logical Area Id Specified.......................85
3.4.12 RMU/BACKUP/LIBRARIAN Ignored Specified Block Sizes Over 32256..............................86
3.4.13 RMU/RESTORE/ONLY_ROOT Did Not Support the /ENCRYPT Qualifier..........................87
3.4.14 RdbALTER Documented Syntax LOCKED_SPACE Returned a Syntax Error........................88
3.4.15 RMU/REPAIR/INIT=TSN Does Not Initialize Snapshots..89

Oracle® Rdb for OpenVMS

iii

Table of Contents
3.5 RMU Show Statistics Errors Fixed...91

3.5.1 RMU/SHOW STATISTICS/CLUSTER Did Not Show Transaction Type.................................91
3.5.2 RMU Show Statistics Not Using the Full Screen Size for Details...91

3.6 Hot Standby Errors Fixed..92
3.6.1 Checksum Errors on Database Replication Between VMS IA64 and Alpha...............................92

Chapter 4Software Errors Fixed in Oracle Rdb Release 7.2.5.1..94

4.1 Software Errors Fixed That Apply to All Interfaces...95
4.1.1 Unexpected Memory Allocation Failure When Accessing Remote Database.............................95
4.1.2 Alignment Faults on Itanium Using Multiple Mapped Index Columns.......................................95
4.1.3 Problem Writing Large TSN Values to Data and Snap Pages..96
4.1.4 Query With Complex Shared OR Predicates Returns Wrong Result...96
4.1.5 Query With Shared OR Predicates Returns Wrong Result...97
4.1.6 Query With LSS, LEQ and NOT NULL Predicate Returns Wrong Result on Itanium
 System...99
4.1.7 SQLSRV−E−PWDEXPIRED Error Restored..100
4.1.8 Incorrect Results on IA64 using Partitioned Descending Index...101
4.1.9 Unexpected Failure When Identity Sequence is Not Granted Access..102
4.1.10 LIMIT TO/ORDER BY Query With OR Predicate Returns Wrong Result.............................102

4.2 SQL Errors Fixed...106
4.2.1 THRESHOLDS Clause Not Applied to Default LIST Storage by CREATE STORAGE
 MAP Statement...106
4.2.2 Some CHARACTER SET Clauses Ignored by IMPORT DATABASE Statement...................106
4.2.3 Unexpected Bugcheck From DROP INDEX or ALTER INDEX Statements...........................107
4.2.4 Unexpected Error When Both LIKE and COMPRESSION Used in CREATE TABLE
 Statement..108
4.2.5 Wrong Results When UNION Mixed With EXCEPT, MINUS or INTERSECT......................109
4.2.6 Unexpected Error When Defining Trigger With INSERT ... DEFAULT VALUES Clause.....109
4.2.7 Unexpected Bugcheck When Declaring a Local Temporary Table With the Same Name as
 a System Table..110

4.3 RMU Errors Fixed..111
4.3.1 RMU Extract Did Not Propagate Domain Attributes...111
4.3.2 RMU/RECOVER Consistency Bugcheck When Fetching a SPAM Page.................................112
4.3.3 Problems If a Full RMU/BACKUP Was Not Done After RMU/MOVE_AREA......................113
4.3.4 Parallel Incremental Backup RMU−F−NOFULLBCK Error Handling Problem......................117
4.3.5 Problem with RMU/REPAIR/INIT=TSNS When TSNs Exceed 4,294,967,295.......................119
4.3.6 Incorrect RMU/BACKUP/AFTER Truncate AIJ File Error Handling......................................119
4.3.7 Unexpected RMU−W−DATNOTIDX Reported by RMU Verify for Rdb$WORKLOAD
 Table...121

4.4 LogMiner Errors Fixed..123
4.4.1 RMU/UNLOAD/AFTER_JOURNAL SYSTEM−W−ENDOFFILE Error on a Work File......123

Oracle® Rdb for OpenVMS

iv

Table of Contents
4.5 RMU Show Statistics Errors Fixed...125

4.5.1 RMU/SHOW STATISTICS Configuration File Problems in Oracle Rdb Release 7.2.5.0........125
4.5.2 RMU/SHOW STATISTICS Release 7.2.5.0 Hot Row Information Screen
 %SYSTEM−F−ACCVIO...126
4.5.3 Unexpected Failure in COSI_MEM_FREE_VMLIST When Using RMU Show Statistics......128
4.5.4 Invalid Average Transaction Duration Value Displayed When Using RMU Show Statistics...129
4.5.5 RMU Show Statistics Sometimes Bugchecks When Using Process Monitoring.......................129
4.5.6 RMU Show Statistics Sometimes Bugchecks on Row Cache Information Screen....................130

Chapter 5Software Errors Fixed in Oracle Rdb Release 7.2.5...131

5.1 Software Errors Fixed That Apply to All Interfaces...132
5.1.1 Server Process Name Format Changed...132
5.1.2 Drop Storage Area Cascade Failed With Lock On Unrelated Area...132
5.1.3 Temporary File Names...132
5.1.4 Incorrect Storage Area Selected In Cluster...132
5.1.5 Unexpected SYSTEM−F−VA_NOTPAGALGN Error With Global Buffers and Reserved
 Memory Registry..134
5.1.6 Unexpected Bugcheck at RDMS$$PARSE_INTCOM_BUFFER Which Reports "Obsolete
 Version of Database"..134
5.1.7 RDBPRE Precompiler RUNTIMSTK Informational Message From MACRO Compiler.........135
5.1.8 Bugcheck At RUJUTL$ROLLBACK_LOOP..135
5.1.9 ALTER TABLE Fails With Constraint Violation..136
5.1.10 Increased Default for RDMS$BIND_WORK_VM and Relocation of Related VM Buffer
 to P2 Virtual Address Space...137
5.1.11 Full Outer Join Query Returns Wrong Column Values When Outer Table is Empty..............137
5.1.12 Reduction in Use of Rdb Executive Sort P0 Address Space..138
5.1.13 Attaching to Rdb at Remote Site Stalls..138
5.1.14 Increased Default Use of "Quick Sort"...138
5.1.15 Bugcheck While In PSII2INSERTDUPBBC...139
5.1.16 Divide Operator Now Returns DOUBLE PRECISION Results Rather than REAL................140
5.1.17 Unexpected Results From IN Clause on a Subselect Containing FETCH FIRST or LIMIT
 TO...140
5.1.18 Translation From HEX Character Set is Incorrect..141
5.1.19 Nested Query With Left Outer Join and GROUP BY Bugchecks During Query
 Compilation..142
5.1.20 Query With Nested Left Outer Join Bugchecks With Floating Overflow................................143
5.1.21 DBR Process Waiting for RMS Lock While Adding Process Rights......................................144
5.1.22 DBR Bugcheck at RUJUTL$ROLLBACK_LOOP + 00000760...144
5.1.23 Rdb Monitor Log File Write Rate Reduced..145
5.1.24 Memory Layout Change For Global Section..145
5.1.25 CONCAT on Operands of Same Datatype and Same Size Bugchecks....................................145
5.1.26 SQLSRV−E−PWDEXPIRED Error Restored..146
5.1.27 Query Returns Wrong Result and Bugchecks at Exit Using Bitmapped Scan.........................147
5.1.28 Query Runs Very Slow When Using Bitmapped Scan...148
5.1.29 Query With "NOT (conj1 OR conj2 OR conj3)" Predicate Bugchecks...................................150
5.1.30 Query Returns Wrong Results Using Bitmap Scan With Zigzag Match..................................150
5.1.31 Query With Over 26 Million Rows Slows Down...152

Oracle® Rdb for OpenVMS

v

Table of Contents
5.2 SQL Errors Fixed...154

5.2.1 Unexpected Bugcheck When Using INSERT ... SELECT Into a View.....................................154
5.2.2 Warning Now Issued for Unsupported Character Operations..154
5.2.3 Incorrect Results From LIKE ... IGNORE CASE..155
5.2.4 Unexpected ACCVIO When Using Dynamic DECLARE Cursor Statement............................156
5.2.5 Incorrect Value Returned By RETURNING Clause of the INSERT Statement........................157
5.2.6 Unexpected Failure When Adding IDENTITY Columns..157
5.2.7 Unexpected Bugcheck Dump Produced When UNION and GROUP BY Are Used.................158
5.2.8 SET EXECUTE Now Implicitly Executed When ROLLBACK Question Is Asked.................158
5.2.9 Unexpected Bugcheck When Accessing View Changed Using the ALTER VIEW
 Statement..159
5.2.10 Unexpected CAPTIVEACCT Error When Using Spawn Directive in Interactive SQL for
 RESTRICTED Accounts..159
5.2.11 Unexpected NOTRIGRTN Error When Trigger Calls a Procedure Using LOCK TABLE
 Statement..160
5.2.12 Unexpected Bugchecks When Some Undocumented Syntax Used...160
5.2.13 Unexpected Slow Performance for Query Using SQL Functions..161

5.3 RDO and RDML Errors Fixed..162
5.3.1 Duplicate Values Generated For IDENTITY Column When RDO Interface Used For
 STORE..162

5.4 RMU Errors Fixed..163
5.4.1 RMU/UNLOAD to XML Does Not Replace Special Characters..163
5.4.2 RMU/RESTORE Could Fail When /BLOCKS_PER_PAGE Was Specified............................163
5.4.3 An Incremental Instead Of a Full Backup Could Corrupt a Database..165
5.4.4 RMU/BACKUP/AFTER Invalid Open Record With Emergency AIJ Files..............................167
5.4.5 RMU/COLLECT OPTIMIZER Invalid Cardinality With Vertical Record Partitioning...........168
5.4.6 RMU /RECOVER /ORDER_AIJ May Remove Required Journal Files...................................170
5.4.7 RMU/CONVERT Fails to Convert Databases With Database−wide Collating Sequence........171
5.4.8 RMU/CONVERT/NOCOMMIT Did Not Call "Fix Up" Routine at End of Conversion..........172
5.4.9 Problems Validating Files Specified in the "/AIJ_OPTIONS" File...173
5.4.10 RMU Online Backup May Store TSNs of Zero..175
5.4.11 RMU/SET AFTER/AIJ_OPTIONS RMU−F−VALLSMIN Error If "RESERVE 0"..............175
5.4.12 RMU/BACKUP/PARALLEL/RESTORE_OPTIONS Was Not Fully Supported...................177

5.5 LogMiner Errors Fixed..180
5.5.1 RMU/UNLOAD/AFTER_JOURNAL /STATISTICS With /OUTPUT Information Display...180

5.6 Row Cache Errors Fixed..181
5.6.1 Row Caching Remains Unexpectedly Disabled for a Newly Added Storage Area...................181

5.7 RMU Show Statistics Errors Fixed...182
5.7.1 Stall Statistics (Aggregate Count) In RMU /SHOW STATISTICS Inaccurate.........................182
5.7.2 Unexpected ACCVIO When Using RMU/SHOW STATISTICS..182

Oracle® Rdb for OpenVMS

vi

Table of Contents
Chapter 6Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.3.....................................183

6.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.3..184
6.1.1 SQL Now Supports SQL Standard Syntax for SET CONSTRAINTS ALL..............................184
6.1.2 New RMU/DUMP/BACKUP Enhanced Error Handling Features..184
6.1.3 RMU/DUMP/BACKUP Now Dumps Plan File Parameters for Parallel Backups....................185

Chapter 7Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.2.....................................188

7.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.2..189
7.1.1 New Prefix Added to Logical Name Created by the Log Recovery Server...............................189
7.1.2 Information Tables Updated...190
7.1.3 RMU/RESTORE/ONLY_ROOT Now Supports the /ENCRYPT Qualifier..............................191
7.1.4 New Option POSITION_COLUMN Added to RMU Extract..192

Chapter 8Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.1.....................................194

8.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.1..195
8.1.1 New RMU Options File to Modify the Row Cache Backing Store Directories.........................195
8.1.2 New RMU/REPAIR Options File to Initialize Database Snapshot Files...................................197
8.1.3 RDMSTT Image Optionally Installed..198
8.1.4 RMU Show Statistics Now Includes New Rdb Executive Statistics..199

Chapter 9Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.0.....................................200

9.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.0..201
9.1.1 RMU /SHOW STATISTICS /ROWS= and /COLUMNS= Feature...201
9.1.2 New LIMIT Clauses Implemented for the CREATE and ALTER PROFILE Statement..........201
9.1.3 Use of RMS MBC Larger Than 127...202
9.1.4 New Optimizations for the LIKE Predicate..203
9.1.5 Additional Database Storage Area Checks...206
9.1.6 New Optimizations for the STARTING WITH Predicate..206
9.1.7 New Optimizations for the CONTAINING Predicate..206
9.1.8 Monitor Memory Management Enhancements..207
9.1.9 Average Transaction Duration Display Precision Increased..207
9.1.10 Support for New CONCAT_WS Builtin Function...208
9.1.11 New SYSTIMESTAMP Function Added...209
9.1.12 New SET FLAGS Keyword to Control Optimizer Query Rewrite..209
9.1.13 New SYS_GUID Function Added..210
9.1.14 New COMPRESSION Clause for DECLARE LOCAL TEMPORARY TABLE
 Statement..211
9.1.15 New COMPRESSION Clause for CREATE TABLE Statement...212
9.1.16 Support for 2 TiB Storage Area Files...214
9.1.17 New RMU/ALTER Feature to Modify the Root and Area Header Unique Identifier.............214
9.1.18 New MATCHING Predicate...218
9.1.19 New RMU/BACKUP−RESTORE Feature to Check Database Page Integrity........................219
9.1.20 New RMU/DUMP/BACKUP /AREA, /START and /END Qualifiers....................................220
9.1.21 Reduced CPU Usage and Improved Performance..222

Oracle® Rdb for OpenVMS

vii

Table of Contents
9.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.0

9.1.22 New Logical Name to Control Sizing of LIST OF BYTE VARYING Pointer Segments.......223
9.1.23 RMU /BACKUP Performance Improvements..224
9.1.24 New RMU/BACKUP/ENCRYPT "%RMU−I−ENCRYPTUSED" Message Added..............224
9.1.25 New DATABASE_HANDLE Option for the GET DIAGNOSTICS Statement.....................224
9.1.26 New SYS_GET_DIAGNOSTIC Function Supported for SQL..225
9.1.27 Improved Error Handling for Database Disk Backup File Sets..226

Chapter 10Documentation Corrections, Additions and Changes..229

10.1 Documentation Corrections...230
10.1.1 Oracle Rdb Release 7.2.x.x New Features Document Added..230
10.1.2 RMU Replicate On−Line Help Reports Incorrect Maximum Checkpoint Value for
 Configure Qualifier...230
10.1.3 Missing or Incorrect Documentation for SET AUTOMATIC TRANSLATION Command...230
10.1.4 Required Privileges for AUTHORIZATION Clause of CREATE MODULE........................231
10.1.5 ROUND and TRUNC Are Built In Functions for SQL..232
10.1.6 Missing Documentation for CREATE OUTLINE Statement..233
10.1.7 Sorting Capabilities in Oracle Rdb...235
10.1.8 RMU /SET ROW_CACHE Command Updates..236
10.1.9 Documentation for the DEBUG_OPTIONS Qualifier of RMU Unload..................................237
10.1.10 SQL$MSGxx.DOC Is Not Alphabetical...238
10.1.11 LOCK_TIMEOUT Documentation Error in RMU Reference Manual Release 7.2..............239
10.1.12 Revised Example for SET OPTIMIZATION LEVEL Statement..239
10.1.13 RMU /VERIFY Process Quotas and Limits Clarification..240
10.1.14 Online Backup Can Be Performed With Transfer Via Memory...241
10.1.15 Missing Example for CREATE STORAGE MAP...241
10.1.16 RDM$BIND_MAX_DBR_COUNT Documentation Clarification.......................................243
10.1.17 Database Server Process Priority Clarification...244
10.1.18 Explanation of SQL$INT in a SQL Multiversion Environment and How to Redefine
 SQL$INT..245
10.1.19 Clarification of PREPARE Statement Behavior...246
10.1.20 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter.............246
10.1.21 Missing Tables Descriptions for the RDBEXPERT Collection Class...................................247
10.1.22 Missing Columns Descriptions for Tables in the Formatted Database...................................248

10.2 Address and Phone Number Correction for Documentation...256

10.3 Online Document Format and Ordering Information ..257

Chapter 11Known Problems and Restrictions...258

11.1 Known Problems and Restrictions in All Interfaces...259
11.1.1 Aggregate Query With Filter Predicates Returns Wrong Result..259
11.1.2 Session Crash if Run Time Routine Native Compiler Enabled..260
11.1.3 Possible Incorrect Results When Using Partitioned Descending Indexes................................260
11.1.4 Remote Attach Stalls Before Detecting a Node is Unreachable...261
11.1.5 Case Sensitive Values in RDB$CLIENT_DEFAULTS.DAT..262

Oracle® Rdb for OpenVMS

viii

Table of Contents
11.1 Known Problems and Restrictions in All Interfaces

11.1.6 Standalone WITH Clause in Compound Statements Now Deprecated....................................263
11.1.7 Calling DECC$CRTL_INIT...263
11.1.8 Application and Oracle Rdb Both Using SYS$HIBER..264
11.1.9 Unexpected RCS Termination..265
11.1.10 Possible Incorrect Results When Using Partitioned Descending Indexes on I64...................266
11.1.11 Changes for Processing Existence Logical Names...266
11.1.12 Patch Required When Using VMS V8.3 and Dedicated CPU Lock Manager.......................267
11.1.13 SQL Module or Program Fails with %SQL−F−IGNCASE_BAD...267
11.1.14 External Routine Images Linked with PTHREAD$RTL...268
11.1.15 Using Databases from Releases Earlier than V7.0...269
11.1.16 Partitioned Index with Descending Column and Collating Sequence....................................269
11.1.17 Domain−Qualified TCP/IP Node Names in Distributed Transactions...................................270
11.1.18 ILINK−E−INVOVRINI Error on I64...271
11.1.19 New Attributes Saved by RMU/LOAD Incompatible With Prior Versions...........................271
11.1.20 SYSTEM−F−INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or
 LARGE MEMORY IS ENABLED in Galaxy Environment...272
11.1.21 Oracle Rdb and OpenVMS ODS−5 Volumes..272
11.1.22 Optimization of Check Constraints...273
11.1.23 Carryover Locks and NOWAIT Transaction Clarification..275
11.1.24 Unexpected Results Occur During Read−Only Transactions on a Hot Standby Database....275
11.1.25 Row Cache Not Allowed While Hot Standby Replication is Active......................................276
11.1.26 Excessive Process Page Faults and Other Performance Considerations During Oracle
 Rdb Sorts...276
11.1.27 Control of Sort Work Memory Allocation..278
11.1.28 The Halloween Problem...278

11.2 SQL Known Problems and Restrictions...281
11.2.1 SET FLAGS CRONO_FLAG Removed..281
11.2.2 Interchange File (RBR) Created by Oracle Rdb Release 7.2 Not Compatible With
 Previous Releases..281
11.2.3 Single Statement LOCK TABLE is Not Supported for SQL Module Language and SQL
 Precompiler...281
11.2.4 Multistatement or Stored Procedures May Cause Hangs...282
11.2.5 Use of Oracle Rdb from Shareable Images...283

11.3 Oracle RMU Known Problems and Restrictions...284
11.3.1 RMU Convert Fails When Maximum Relation ID is Exceeded...284
11.3.2 RMU Unload /After_Journal Requires Accurate AIP Logical Area Information....................284
11.3.3 Do Not Use HYPERSORT with RMU Optimize After_Journal Command............................285
11.3.4 Changes in EXCLUDE and INCLUDE Qualifiers for RMU Backup......................................286
11.3.5 RMU Backup Operations Should Use Only One Type of Tape Drive.....................................286
11.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors..287

11.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier.............................289
11.4.1 Converting Single−File Databases..289
11.4.2 Row Caches and Exclusive Access...289
11.4.3 Exclusive Access Transactions May Deadlock with RCS Process..289

Oracle® Rdb for OpenVMS

ix

Table of Contents
11.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier

11.4.4 Strict Partitioning May Scan Extra Partitions...289
11.4.5 Restriction When Adding Storage Areas with Users Attached to Database............................290
11.4.6 Multiblock Page Writes May Require Restore Operation..291
11.4.7 Replication Option Copy Processes Do Not Process Database Pages Ahead of an
 Application..291

11.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier292
11.5.1 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE.....................................292
11.5.2 Different Methods of Limiting Returned Rows from Queries..292
11.5.3 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel
 Index Creation...293
11.5.4 Side Effect When Calling Stored Routines...295
11.5.5 Considerations When Using Holdable Cursors..296
11.5.6 AIJSERVER Privileges..296

Oracle® Rdb for OpenVMS

x

Oracle® Rdb for OpenVMS

Oracle® Rdb for OpenVMS 1

Release Notes
Release 7.2.5.3

Release Notes 2

July 2013
Oracle Rdb Release Notes, Release 7.2.5.3 for OpenVMS

Copyright © 1984, 2013 Oracle Corporation. All rights reserved.

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error−free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency−specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the
Government contract, the additional rights set forth in FAR 52.227−19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail−safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle CODASYL DBMS,
Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third−party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third−party content, products, or services.

July 2013 3

Contents

Contents 4

Preface

Preface 5

Purpose of This Manual
This manual contains release notes for Oracle Rdb Release 7.2.5.3. The notes describe changed and enhanced
features; upgrade and compatibility information; new and existing software problems and restrictions; and
software and documentation corrections.

Purpose of This Manual 6

Intended Audience
This manual is intended for use by all Oracle Rdb users. Read this manual before you install, upgrade, or use
Oracle Rdb Release 7.2.5.3.

Intended Audience 7

Document Structure
This manual consists of the following chapters:

Chapter 1 Describes how to install Oracle Rdb Release 7.2.5.3.

Chapter 2 Describes problems corrected in Oracle Rdb Release 7.2.5.3.

Chapter 3 Describes problems corrected in Oracle Rdb Release 7.2.5.2.

Chapter 4 Describes problems corrected in Oracle Rdb Release 7.2.5.1.

Chapter 5 Describes problems corrected in Oracle Rdb Release 7.2.5.0.

Chapter 6 Describes enhancements introduced in Oracle Rdb Release 7.2.5.3.

Chapter 7 Describes enhancements introduced in Oracle Rdb Release 7.2.5.2.

Chapter 8 Describes enhancements introduced in Oracle Rdb Release 7.2.5.1.

Chapter 9 Describes enhancements introduced in Oracle Rdb Release 7.2.5.0.

Chapter 10Provides information not currently available in the Oracle Rdb documentation set.

Chapter 11Describes problems, restrictions, and workarounds known to exist in Oracle Rdb Release 7.2.5.3.

Document Structure 8

Chapter 1
Installing Oracle Rdb Release 7.2.5.3
This software update is installed using the OpenVMS VMSINSTAL utility.

NOTE

Oracle Rdb Release 7.2 kits are full kits. There is no requirement to install any prior
release of Oracle Rdb when installing new Rdb Release 7.2 kits.

Chapter 1Installing Oracle Rdb Release 7.2.5.3 9

1.1 Oracle Rdb on HP OpenVMS Industry Standard
64
The Oracle Rdb product family is available on the HP OpenVMS Industry Standard 64 platform and the
OpenVMS AlphaServer platform. In general, the functionality for one platform is available on the other
platform. However, certain differences between the platforms may result in minor capability and functionality
differences.

The database format for Oracle Rdb Release 7.2 is the same on both I64 and Alpha platforms and databases
may be accessed simultaneously from both architectures in a cluster environment. Access to an Oracle Rdb
Release 7.2 database from prior Rdb versions (on Alpha or VAX platforms) or from other systems on the
network is available via the Oracle Rdb remote database server.

1.1 Oracle Rdb on HP OpenVMS Industry Standard 64 10

1.2 Requirements
The following conditions must be met in order to install this software:

This Oracle Rdb release requires the following OpenVMS environments:
OpenVMS Alpha V8.2 to V8.4−x.♦
OpenVMS Industry Standard 64 V8.2−1 to V8.4−x.♦

•

Oracle Rdb must be shutdown before you install this update kit. That is, the command file
SYS$STARTUP:RMONSTOP72.COM should be executed before proceeding with this installation.
If you have an OpenVMS cluster, you must shutdown the Rdb Release 7.2 monitor on all nodes in the
cluster before proceeding.

•

After executing RMONSTOP72.COM, no process on any system in the cluster should have any
existing RDMSHRP72.EXE image activated. See Section 1.2.1 for additional information.

•

The installation requires approximately 280,000 blocks for OpenVMS Alpha systems.•
The installation requires approximately 500,000 blocks for OpenVMS I64 systems.•
The following OpenVMS Mandatory Update from HP needs to be installed on Itanium 8.4 systems
before installing this kit: VMS84I_MUP−V0500. A reboot is required after the MUP is installed. The
problem description for this fix is: The OpenVMS OTS library string comparison routines
OTS$STRCMP_LSSP and OTS$STRCMP_LEQP might return inaccurate results when used with
specific string patterns.
This Mandatory Kit has the following dependencies:

VMS84I_SYS−V0300♦
VMS84I_UPDATE−V0800♦
VMS84I_PCSI−V0400♦

Please contact your HP Support Representative if you have questions or need more information about
these updates.

•

Oracle strongly recommends that all available OpenVMS patches are installed on all systems prior to
installing Oracle Rdb. Contact your HP support representative for more information and assistance.

•

1.2.1 Ensure No Processes Have RDMSHRP Image
Activated

The Oracle Rdb installation procedure checks to make sure that the Oracle Rdb Monitor (RDMMON) process
is not running. However, it is also important to make sure that there are no processes on the cluster that share
the system disk that have image activated a prior version RDMSHRP image. Such processes may not be
currently attached to a database but may do so in the future and could cause problems by using an older
RDMSHRP image with a later Rdb installation.

The following command procedure can be used on each cluster node that shares the system disk to determine
if there are any processes that have activated the RDMSHRP72.EXE image. This procedure should be
executed by a privileged account after RMONSTOP72 has been run. Any processes that have
RDMSHRP72.EXE activated at this point should be terminated prior to starting the Rdb installation
procedure.

$ DEFINE /NOLOG /USER RDB$TMP 'RDB$TMP
$ ANALYZE /SYSTEM
 SET OUTPUT RDB$TMP
 SHOW PROCESS /CHANNELS ALL

1.2 Requirements 11

 EXIT
$ SEARCH /OUTPUT='RDB$TMP' 'RDB$TMP';−1 RDMSHRP72.EXE,"PID:"
$ SEARCH 'RDB$TMP' RDMSHRP72.EXE /WINDOW=(1,0)
$ DELETE /NOLOG 'RDB$TMP';*

In the following example, the process 2729F16D named "FOO$SERVER" has the image RDMSHRP72.EXE
activated even after RMONSTOP72.COM has been executed and this process is terminated prior to starting
the Rdb installation procedure:

$ @SYS$STARTUP:RMONSTOP72.COM
.
.
.

$ @FIND_RDMSHRP72_PROC.COM

OpenVMS system analyzer

Process index: 016D Name: FOO$SERVER Extended PID: 2729F16D
 0240 7FEF4460 8384F300 1DGA2:[VMS$COMMON.SYSLIB]RDMSHRP72.EXE;722

$ STOP/IDENTIFICATION=2729F16D

Oracle® Rdb for OpenVMS

1.2 Requirements 12

1.3 Intel Itanium Processor 9300 "Tukwila" Support
For this release of Oracle Rdb on HP Integrity servers, the Intel Itanium Processor 9300 series, code named
"Tukwila", is the newest processor supported.

1.3 Intel Itanium Processor 9300 "Tukwila" Support 13

1.4 Maximum OpenVMS Version Check
OpenVMS Version 8.4−x is the maximum supported version of OpenVMS for this release of Oracle Rdb.

The check for the OpenVMS operating system version and supported hardware platforms is performed both at
installation time and at runtime. If either a non−certified version of OpenVMS or hardware platform is
detected during installation, the installation will abort. If a non−certified version of OpenVMS or hardware
platform is detected at runtime, Oracle Rdb will not start.

1.4 Maximum OpenVMS Version Check 14

1.5 Database Format Changed
The Oracle Rdb on−disk database format is 721. An RMU /CONVERT operation is required for databases
created by or accessed by Oracle Rdb V7.0 or V7.1 to be accessed with Rdb Release 7.2.

Prior to upgrading to Oracle Rdb Release 7.2 and prior to converting an existing database to Oracle Rdb
Release 7.2 format, Oracle strongly recommends that you perform a full database verification (with the "RMU
/VERIFY /ALL" command) along with a full database backup (with the "RMU /BACKUP" command) to
ensure a valid and protected database copy.

1.5 Database Format Changed 15

1.6 Using Databases from Releases Earlier than
V7.0
You cannot convert or restore databases earlier than the Oracle Rdb V7.0 format directly to Oracle Rdb V7.2
format. The RMU Convert command for Oracle Rdb V7.2 supports conversions from Oracle Rdb V7.0 and
V7.1 format databases only. If you have an Oracle Rdb V3.0 through V6.1 format database or database
backup, you must convert it to at least Oracle Rdb V7.0 format and then convert it to Oracle Rdb V7.2 format.
For example, if you have a V4.2 format database, you must convert it first to at least Oracle Rdb V7.0 format,
then convert it to Oracle Rdb V7.2 format.

If you attempt to convert or restore a database that is prior to Oracle Rdb V7.0 format directly to Oracle Rdb
V7.2 format, Oracle RMU generates an error.

1.6 Using Databases from Releases Earlier than V7.0 16

1.7 Invoking the VMSINSTAL Procedure
The installation procedure for Oracle Rdb has been simplified as compared with prior Oracle Rdb major
releases. All Oracle Rdb components are always installed and the number of prompts during the installation
has been reduced. The installation procedure is the same for Oracle Rdb for OpenVMS Alpha and Oracle Rdb
for OpenVMS I64.

To start the installation procedure, invoke the VMSINSTAL command procedure as in the following
examples.

To install the Oracle Rdb for OpenVMS I64 kit that is performance targeted for I64 platforms:

 @SYS$UPDATE:VMSINSTAL RDBV72530IM device−name

•

To install the Oracle Rdb for OpenVMS Alpha kit that is compiled to run on all Alpha platforms:

 @SYS$UPDATE:VMSINSTAL RDBV72530AM device−name

•

To install the Oracle Rdb for OpenVMS Alpha kit that is performance targeted for Alpha EV56 and
later platforms:

 @SYS$UPDATE:VMSINSTAL RDBV72531AM device−name

•

device−name

Use the name of the device on which the media is mounted. If the device is a disk−type drive, you also need
to specify a directory. For example: DKA400:[RDB.KIT]

1.7 Invoking the VMSINSTAL Procedure 17

1.8 Stopping the Installation
To stop the installation procedure at any time, press Ctrl/Y. When you press Ctrl/Y, the installation procedure
deletes all files it has created up to that point and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you and a prompt asks if you want to
continue. You might want to continue the installation to see if any additional problems occur. However, the
copy of Oracle Rdb installed will probably not be usable.

1.8 Stopping the Installation 18

1.9 After Installing Oracle Rdb
This update provides a new Oracle TRACE facility definition for Oracle Rdb. Any Oracle TRACE selections
that reference Oracle Rdb will need to be redefined to reflect the new facility version number for the updated
Oracle Rdb facility definition, "RDBVMSV7.2".

If you have Oracle TRACE installed on your system and you would like to collect for Oracle Rdb, you must
insert the new Oracle Rdb facility definition included with this update kit.

The installation procedure inserts the Oracle Rdb facility definition into a library file called
EPC$FACILITY.TLB. To be able to collect Oracle Rdb event−data using Oracle TRACE, you must move
this facility definition into the Oracle TRACE administration database. Perform the following steps:

Extract the definition from the facility library to a file (in this case, RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.2 −
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPC$FACILITY.TLB

1.

Insert the facility definition into the Oracle TRACE administration database.

$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

2.

Note that the process executing the INSERT DEFINITION command must use the version of Oracle Rdb that
matches the version used to create the Oracle TRACE administration database or the INSERT DEFINITION
command will fail.

1.9 After Installing Oracle Rdb 19

1.10 VMS$MEM_RESIDENT_USER Rights Identifier
Required
Oracle Rdb Version 7.1 introduced additional privilege enforcement for the database or row cache attributes
RESIDENT, SHARED MEMORY IS SYSTEM and LARGE MEMORY IS ENABLED. If a database utilizes
any of these features, then the user account that opens the database must be granted the
VMS$MEM_RESIDENT_USER rights identifier.

Oracle recommends that the RMU/OPEN command be used when utilizing these features.

1.10 VMS$MEM_RESIDENT_USER Rights Identifier Required 20

1.11 Installation, Configuration, Migration, Upgrade
Suggestions
Oracle Rdb Release 7.2 fully supports mixed−architecture clusters for AlphaServer systems and HP Integrity
servers.

In certain development environments, it may be helpful to incorporate a VAX system into the AlphaServer
systems and HP Integrity servers cluster. While HP and Oracle believe that in most cases this will not cause
problems to the computing environment, we have not tested it extensively enough to provide support. It is
possible that VAX systems in a cluster may cause a problem with the cluster performance or stability. Should
this happen, the VAX systems in the cluster which are causing the difficulty should be removed.

Oracle continues to support mixed architecture clusters of VAX systems and AlphaServer systems with direct
database access using Rdb V7.0. Oracle Rdb V7.1 runs natively on Alpha systems and clusters. All Rdb
versions include a built−in remote network database server allowing cross−architecture and cross−version
application and database access.

All systems directly accessing the same database within a cluster environment must be running an identical
version of Oracle Rdb (where the first 4 digits of the version number match; the fifth digit indicating an
optimization level is not significant in this requirement). Access from other versions of Oracle Rdb may be
accomplished with the built−in remote network database server for cross−version database access.

When moving applications from existing Alpha or VAX configurations to new environments containing
Integrity Server systems, there are numerous possible paths depending on the requirements of individual sites.
In general, this can be as straightforward as adding a new node to an already existing AlphaServer systems
cluster or standalone system, except the node is an HP Integrity server. Table 1−1, Migration Suggestions,
considers several possible situations and recommended steps to take.

Table 1−1 Migration Suggestions

Case You Wish To... You should...

1 Add an Integrity server to an existing cluster of Alpha
servers Verify database(s) using

RMU/VERIFY/ALL.
1.

Backup database(s) using
RMU/BACKUP.

2.

Install Rdb 7.2 on Integrity and
Alpha nodes.

3.

Convert database(s) to the Rdb
7.2 structure level using
RMU/CONVERT.

4.

Verify database(s) again using
RMU/VERIFY/ALL.

5.

Backup database(s) using
RMU/BACKUP.

6.

Access database(s) from Alpha
and Integrity directly by
specifying database root file

7.

1.11 Installation, Configuration, Migration, Upgrade Suggestions 21

specification(s) in SQL
ATTACH statements.

2

Add an Integrity server to an existing mixed cluster of
VAX and Alpha nodes and access an Rdb database
from all nodes. Disks used for the database are
accessible from all nodes.

Verify database(s) using
RMU/VERIFY/ALL.

1.

Backup database(s) using
RMU/BACKUP.

2.

Install Rdb 7.2 on Integrity and
Alpha nodes.

3.

Convert database(s) to the Rdb
7.2 structure level using
RMU/CONVERT.

4.

Verify database(s) again using
RMU/VERIFY/ALL.

5.

Backup database(s) using
RMU/BACKUP.

6.

Access database(s) from Alpha
and Integrity nodes directly by
specifying database root file
specification(s) in SQL
ATTACH statements.

7.

Access the database from VAX
node(s) using the Rdb built−in
network server (remote
database) by specifying one of
the Alpha or Integrity node
names in SQL ATTACH
statements.

8.

After thorough testing, remove
VAX nodes from the cluster.

9.

3
Move database(s) to new disks and add an Integrity
server to an existing cluster.

Use RMU/COPY with an
options file to move the
database files to the new disks.

1.

Follow the steps for case 1 or
case 2.

2.

4
Continue to use Rdb primarily from VAX or Alpha
nodes using earlier releases. Add an Integrity server for
application testing purposes.

Install Rdb 7.2 on Integrity
node.

1.

Access existing database(s)
from Integrity node by
specifying one of the Alpha or
VAX node names in the SQL
ATTACH statements.

2.

When testing is complete,
follow the steps in case 1 or
case 2.

3.

5 Add an Integrity server to an existing cluster of Alpha
servers or Create a new cluster from an existing
stand−alone Alpha server by adding one or more new

Verify database(s) using
RMU/VERIFY/ALL.

1.

Oracle® Rdb for OpenVMS

1.11 Installation, Configuration, Migration, Upgrade Suggestions 22

Integrity servers. Backup database(s) using
RMU/BACKUP.

2.

Install Rdb 7.2 on Integrity and
Alpha nodes.

3.

Convert database(s) to the Rdb
7.2 structure level using
RMU/CONVERT.

4.

Verify database(s) again using
RMU/VERIFY/ALL.

5.

Backup database(s) using
RMU/BACKUP.

6.

Access database(s) from Alpha
and Integrity directly by
specifying database root file
specification in the SQL
ATTACH statements.

7.

6
Create a new stand−alone Integrity Server system or
cluster of Integrity Servers and move database(s) to the
new environment.

Verify database(s) using
RMU/VERIFY/ALL.

1.

Install Rdb 7.2 on new
system(s).

2.

Back up database(s) on the
existing cluster using
RMU/BACKUP.

3.

Copy backup file(s) to the new
system (or, if using tape media,
make the tapes available to the
new system).

4.

Restore database(s) on the new
system using RMU/RESTORE
specifying the location of each
database file in an options file.

5.

Verify the new database using
RMU/VERIFY/ALL.

6.

Refer to the Oracle Rdb documentation set for additional information and detailed instructions for using RMU
and remote databases.

Note that database parameters might need to be altered in the case of accessing a database from a larger
number of systems in a cluster.

Oracle® Rdb for OpenVMS

1.11 Installation, Configuration, Migration, Upgrade Suggestions 23

Chapter 2
Software Errors Fixed in Oracle Rdb Release
7.2.5.3
This chapter describes software errors that are fixed by Oracle Rdb Release 7.2.5.3.

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.2.5.3 24

2.1 Software Errors Fixed That Apply to All
Interfaces

2.1.1 Corrupt SORTED RANKED Index After Row INSERT

Bugs 14261855 and 14099150

In rare cases, an INSERT or UPDATE of a SORTED RANKED index can leave the index incomplete. The
reported problem was caused by a cascading node split upon an INSERT. That is, an INSERT caused the node
to split and that action caused the parent node to split, and so on up the index. The subsequent verify of the
index using RMU/VERIFY/INDEX/DATA reported the missing key values which shows that a sub−tree of
the index was not correctly incorporated into the index tree.

The following examples show possible symptoms associated with this problem.

The originally reported problem showed an unexpected PRIMARY KEY violation.

SQL> select * from BILLS_TABLE
cont> where account_id = 200350 and id = 4442;
0 rows selected
SQL> insert into BILLS_TABLE (account_id, id) values (200350, 4442);
%RDB−E−INTEG_FAIL, violation of constraint BILLS_TABLE_PKEY caused operation
to fail
−RDB−F−ON_DB, on database DISK1:[TESTING]SAMPLE_DB.RDB;
SQL> select * from BILLS_TABLE
cont> where account_id = 200350 and id = 4442;
0 rows selected
SQL>

In this case, the corruption (that caused the constraint violation) was rolled back when the constraint
failed. RMU/VERIFY/INDEX/DATA at this point shows that the index remains unaffected.

•

After dropping the primary key constraint and repeating the INSERT, an
RMU/VERIFY/INDEX/DATA was performed on the database and now shows the problem.

$ RMU/VERIFY/INDEX/DATA SAMPLE_DB.RDB
%RMU−I−BADENDLVL, Last b−tree level at level 2 had non−null next pointer.
 Last b−tree node points to logical dbkey 711:34136:6.
%RMU−I−BADENDLVL, Last b−tree level at level 3 had non−null next pointer.
 Last b−tree node points to logical dbkey 711:34182:8.
%RMU−I−BTRROODBK, root dbkey of B−tree is 711:3900:2
%RMU−W−DATNOTIDX, Row in table BILLS_TABLE is not in any indexes.
 Logical dbkey is 1976:3694:68.
%RMU−W−DATNOTIDX, Row in table BILLS_TABLE is not in any indexes.
 Logical dbkey is 1976:3694:69.
...DATNOTIDX repeated for other missing index references

•

This problem has been corrected in Oracle Rdb Release 7.2.5.3. Oracle recommends that each SORTED
RANKED index be verified using RMU/VERIFY/INDEX/DATA. Any reported problems should be repaired
by using DROP INDEX, followed by a CREATE INDEX, or use an ALTER INDEX ... TRUNCATE ALL
PARTITIONS, followed by an ALTER INDEX ... BUILD ALL PARTITIONS. If these indices are in
UNIFORM format storage areas, a COMMIT and DISCONNECT ALL between each step will optimize page

2.1 Software Errors Fixed That Apply to All Interfaces 25

re−use and reduce the need to extend the storage areas used by the indices.

2.1.2 Node Failure May Cause DBRs to Hang

Bug 14582053

Under normal conditions, if Oracle Rdb is running in a cluster environment and one of the members fails,
database recovery processes (DBR) will automatically be created on one of the other cluster members where
the database is currently open to recover the database users running on that failed node.

In rare circumstances, it was possible for one or more of those DBR's to become blocked waiting for a
database page lock held by an active user. That user would be blocked waiting for cluster membership (PR).
This scenario would be more likely to occur when the systems were under a heavy load, such that the
recovering node is resource constrained and creating recovery processes in such an environment takes longer
than usual.

The workaround would be to DELPRC or STOP/ID all those blocker processes, or stop all database activity
on the remaining nodes using RMU/CLOSE/CLUSTER /ABORT=DELPRC <database−name>, then reopen
the database. The next attach would cause DBRs to be created and recovery should complete successfully.

This problem has been corrected in Oracle Rdb Release 7.2.5.3. The blocker transaction will now release the
contested resource, allowing the recovery to continue.

2.1.3 Session Crash if Run Time Routine Native Compiler
Enabled

Bugs 13495444 and 15979892

In some instances when using the "Just−in−Time native compiler for Itanium systems" (SET FLAGS
'CODE_OPTIMIZATION(2)', which is the default), where a large (greater than 8K) code routine is generated,
a stack corruption could occur resulting in the current process being deleted. A large arithmetic expression
involving float values is one way to possibly cause the problem.

Turning off the compiler by using SET FLAGS 'CODE_OPTIMIZATION(0)' is a viable workaround.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.1.4 ACCVIO In COSI_MEM_GET_VM64_2

Bug 16510902

When using the "Just−in−Time native compiler for Itanium systems" (SET FLAGS
'CODE_OPTIMIZATION(2)') which is the default, if an extremely large code routine was generated, an
ACCVIO and bugcheck dump could occur due to incorrectly allocated memory.

Turning off the compiler by using SET FLAGS 'CODE_OPTIMIZATION(0)' is a viable workaround.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

Oracle® Rdb for OpenVMS

2.1.2 Node Failure May Cause DBRs to Hang 26

2.1.5 Unexpected Loop During Query Optimization

Bug 15989490

Starting with release 7.2.5.1 of Oracle Rdb, it was possible for the Rdb optimizer to enter an unending loop
while compiling some queries. This occurred when the logical name RDMS$USE_OLD_UPDATE_RULES
was defined as 1. This logical name is mostly used when RDO, RDBPRE or RDML applications require
MODIFY or ERASE clauses on joined tables.

The only workaround is to deassign the logical RDMS$USE_OLD_UPDATE_RULES.

This problem has been corrected in Oracle Rdb Release 7.2.5.3. The Rdb optimizer has been corrected to
correctly handle some complex queries which would cause it to loop.

2.1.6 Unexpected Bugcheck During Query Execution at
RDMS$$SET_USED_OR_DESCENDANTS

Bug 16220090

In some cases, a query might bugcheck when processing a subselect within a DISTINCT aggregation. The
following query shows the unexpected bugcheck.

SQL> set dialect 'oracle level1';
cont> select distinct test.col2,
cont> (select col1 from test alg
cont> where test.col1=alg.col1),
cont> '' as flags_comment
cont> from test
cont> order by test.col2 limit to 1 rows;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file <directory>RDSBUGCHK.DMP;

In the above query, the quoted string (named FLAGS_COMMENT) has zero length and is treated as NULL in
ORACLE dialects and is the cause of the bugcheck. In other dialects, selecting NULL explicitly will also
result in a bugcheck. Both DISTINCT and LIMIT TO (aka FETCH FIRST) must be present to reproduce the
problem.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.1.7 Wrong Result When Constant Boolean Appears in
Predicate

Bugs 16459683 and 16452838

In prior releases of Oracle Rdb, it was possible that queries using a predicate containing only literal values
would produce the wrong results. Consider this simple example.

SQL> create index ip on employees (postal_code, sex) ;
SQL>
SQL> set flags 'strategy,detail(2),execution';
SQL>

Oracle® Rdb for OpenVMS

2.1.5 Unexpected Loop During Query Optimization 27

SQL> select first_name, last_name, postal_code
cont> from employees
cont> where sex in ('M','F')
cont> and postal_code in ('03455','03456')
cont> and (1 = 1);
~S#0001
Tables:
 0 = EMPLOYEES
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: ((0.SEX = 'M') OR (0.SEX = 'F')) AND ((0.POSTAL_CODE = '03455') OR (
 0.POSTAL_CODE = '03456'))
 BgrNdx1 IP [(1:1)2] Fan=15
 Keys: r0: 0.POSTAL_CODE = '03456'
 r1: 0.POSTAL_CODE = '03455'
 Bool: ((0.SEX = 'M') OR (0.SEX = 'F')) AND (1 = 1)
~E Leaf−level Constant Boolean was FALSE
0 rows selected
SQL>

Notice that the execution trace "~E Leaf−level Constant Boolean was FALSE" is erroneously generated and
thus the query prematurely terminates the dynamic background process (BgrNdx1).

This problem can also be observed when the DIALECT is set to ORACLE LEVEL1 or ORACLE LEVEL2
and the ROWNUM expression is used. Consider the following example:

SQL> set dialect 'ORACLE LEVEL2';
SQL>
SQL> create index ip on employees (postal_code, sex) ;
SQL>
SQL> set flags 'strategy,detail(2),execution';
SQL>
SQL> select first_name, last_name, postal_code
cont> from employees
cont> where sex in ('M','F')
cont> and postal_code in ('03455','03456')
cont> and rownum < 3;
~S#0001
Tables:
 0 = EMPLOYEES
Firstn: 3 − 1
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: ((0.SEX = 'M') OR (0.SEX = 'F')) AND ((0.POSTAL_CODE = '03455') OR (
 0.POSTAL_CODE = '03456'))
 BgrNdx1 IP [(1:1)2] Fan=15
 Keys: r0: 0.POSTAL_CODE = '03456'
 r1: 0.POSTAL_CODE = '03455'
 Bool: ((0.SEX = 'M') OR (0.SEX = 'F')) AND (1 < 3)
~E Leaf−level Constant Boolean was FALSE
0 rows selected
SQL>

This usage of ROWNUM is rewritten by Rdb to use a FETCH FIRST clause and the original reference to
ROWNUM is converted to the literal 1 as this retains the NULL semantics of the original query. This revised
query produces the same characteristics as described above.

These problems have been corrected in Oracle Rdb Release 7.2.5.3.

Oracle® Rdb for OpenVMS

2.1.5 Unexpected Loop During Query Optimization 28

2.1.8 Query With Zig−zag Match Strategy Returns Wrong
Result

Bugs 16609867 and 16848756

In some cases, the Oracle Rdb optimizer might not process a zig−zag match strategy correctly. This error was
introduced by a correction to a similar problem in Oracle Rdb Release 7.2.5.1.

The problem may occur under these conditions:

When a predicate contains an equality with a literal value and the right−hand side references a
function. For example: 'N' = FUNC(). Even though this equality may not be used as a filter in the
zig−zag match, Rdb may incorrectly pick up the right−hand side "function" as a limiting value for the
zig−zag search.
Rotating the operands can work around this problem, such as FUNC() = 'N', where the limiting value
now correctly becomes 'N'. This is the case in the problem reported in Bug 16609867. Instead of a
function at the right−hand side, it may be a view or a mapped variable.

•

When the WHERE clause contains more than one filter equality with the right−hand side referencing
view columns, as in the following example: 1 = view_column_1 AND 2 = view_column_2. The Rdb
optimizer should not care about the ordering of the operands but may erroneously select the
"view_column" as the limiting value for the zig−zag search.
Rotating the operands can work around this problem, such as view_column_1 = 1 AND
view_column_2 = 2 where the limiting value now becomes '1' and '2'. This is the case in the problem
reported in Bug 16848756. Instead of view column at the right−hand side, it may be the column itself
that causes the problem, for example: 1 = column_1 AND 2 = column_2.

•

The workaround is to disable the zigzag match by defining the following logical:

$DEFINE RDMS$DISABLE_ZIGZAG_MATCH 2

These problems have been corrected in Oracle Rdb Release 7.2.5.3.

2.1.9 Unexpected Bugcheck When Altering a LIST Storage
Map

Bug 16879262

In prior releases of Oracle Rdb, a DROP TABLE or ALTER TABLE ... DROP COLUMN statement that
caused an implicit update to the LIST storage map might lead to a subsequent bugcheck dump during an
ALTER STORAGE MAP statement. The cached version of the LIST storage map is not kept in
synchronization with the one on disk.

The following example shows the problem.

SQL> drop table TEMP_DOC_1;
SQL> create table TEMP_DOC_2 (col3 list of byte varying);
SQL> alter storage map LISTS_MAP
cont> store LISTS
cont> in DOCS for (TEMP_DOC_2);
%RDMS−I−BUGCHKDMP, generating bugcheck dump file DISK1:[TESTING]RDSBUGCHK.DMP;

Oracle® Rdb for OpenVMS

2.1.8 Query With Zig−zag Match Strategy Returns Wrong Result 29

%RDMS−I−BUGCHKDMP, generating bugcheck dump file DISK1:[TESTING]RDSBUGCHK.DMP;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−BAD_CODE, corruption in the query string
SQL>

A workaround is to issue a DISCONNECT ALL and re−attach to the database prior to using the ALTER
STORAGE MAP statement on the LIST map.

This problem has been corrected in Oracle Rdb Release 7.2.5.3. The LIST storage map is now correctly
reloaded after a DROP TABLE or ALTER TABLE ... DROP COLUMN statement if they change the LIST
map.

2.1.10 Oracle Rdb Monitor Log File Shows Inconsistent PIDs
When Accessing a Database From JAVA

Bug 16708710

In prior releases of Oracle Rdb, if you access an Oracle Rdb database from a JAVA application, the Rdb
Monitor Log File will contain inconsistent process IDs (PID) between the "User Attach Request" and "User
Termination" entries, as in the following example:

23−APR−2013 09:46:41.17 − Received user attach request from 220008E0:2
 − process name RDBTHINBUG, user USER1
 − image name "1DGA4:[SYS2.SYSCOMMON.][JAVA$60.BIN]JAVA$JAVA.EXE;1"
 − database name "1DGA13:[USER1.TEST72]MF_PERSONNEL.RDB;1" [_1DGA13]
(130,3,0)
 − opening as monitor ID 1
 − sending normal user attach reply to 220008E0:2

23−APR−2013 09:46:41.24 − Received user image termination from 220004E0:2
 − database name "1DGA13:[USER1.TEST72]MF_PERSONNEL.RDB;1" [_1DGA13]
(130,3,0)
 − database shutdown is complete

These PIDs are valid PIDs. Multiple PIDs for the same JAVA application indicate that JAVA has created
multiple kernel threads for it's execution. The error was solely in the formatting of the message being logged
and has now been fixed. The PIDs displayed for each JAVA thread will be that of the initial PID and the
STREAM ID will distinguish one thread from another, as in the following example:

29−MAY−2013 07:44:34.86 − Received user attach request from 00186912:1
 − process name RDBTHINBUG, user USER1
 − image name "1DGA1:[SYS0.SYSCOMMON.][JAVA$150.BIN]JAVA$JAVA.EXE;1"
 − database name "1DGA4:[USER1.WORK.W3]MF_PERSONNEL.RDB;1" [_1DGA4]
(1278,373,0)
 − opening as monitor ID 1
 − sending normal user attach reply to 00186912:1

29−MAY−2013 07:44:37.82 − Received user attach request from 00186912:2
 − process name RDBTHINBUG, user USER1
 − image name "1DGA1:[SYS0.SYSCOMMON.][JAVA$150.BIN]JAVA$JAVA.EXE;1"
 − database name "1DGA4:[USER1.WORK.W3]MF_PERSONNEL.RDB;1" [_1DGA4]
(1278,373,0)
 − opening as monitor ID 1
 − sending normal user attach reply to 00186912:2

 29−MAY−2013 07:44:37.94 − Received user image termination from 00186912:2

Oracle® Rdb for OpenVMS

2.1.10 Oracle Rdb Monitor Log File Shows Inconsistent PIDs When Accessing a Database From JAVA30

 − database name "1DGA4:[USER1.WORK.W3]MF_PERSONNEL.RDB;1" [_1DGA4]
(1278,373,0)
 − database shutdown is complete

29−MAY−2013 07:44:40.00 − Received user attach request from 00186912:3
 − process name RDBTHINBUG, user USER1
 − image name "1DGA1:[SYS0.SYSCOMMON.][JAVA$150.BIN]JAVA$JAVA.EXE;1"
 − database name "1DGA4:[USER1.WORK.W3]MF_PERSONNEL.RDB;1" [_1DGA4]
(1278,373,0)
 − opening as monitor ID 1
 − sending normal user attach reply to 00186912:3

29−MAY−2013 07:44:40.11 − Received user image termination from 00186912:3
 − database name "1DGA4:[USER1.WORK.W3]MF_PERSONNEL.RDB;1" [_1DGA4]
(1278,373,0)
 − database shutdown is complete

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.1.11 New Error Message − ABMCHNFUL

Bug 14027468

Within a uniform storage area, area bit map (ABM) pages are used to optimize the search for space
management (SPAM) pages. The ABM pages are chained together. If the ABM chain becomes full, no more
SPAM pages can be added to the storage area. In previous releases of Rdb, such a circumstance would
generate a STAREAFUL error:

%RDMS−F−STAREAFUL, storage area MYDISK:[MFP]MF_PERS_SEGSTR.RDA is full

Starting with this release, a new message will be displayed to distinguish the error from other types of
STAREAFUL messages:

%RDMS−F−ABMCHNFUL, max ABM chain reached for MYDISK:[MFP]MF_PERS_SEGSTR.RDA

To continue after such an error, you will need to backup your database and restore the backup, specifying a
larger page size for the affected storage area. This will cause the ABM chain to be rebuilt, allowing for the
creation of additional SPAM pages.

For example, if your storage area page size is 2 blocks per page, then the maximum SPAM pages for that area
would be 23328. After backing up and restoring with a page size of 4, the maximum SPAM pages grows to
47904.

You can use the RMU/DUMP/HEADER to display these values:

Storage area "MF_PERS_SEGSTR"
 Area ID number is 8
 Filename is "DISK:[USER.BUGS.14027468]MF_PERS_SEGSTR.RDA;1"
 Access mode is READ/WRITE
 Pages...
 − Page format is uniform
 − Page size is 2 blocks
 − Initial data page count was 402
 − Current physical page count is 403
 − Page checksums are enabled
 − Row level locking is enabled

Oracle® Rdb for OpenVMS

2.1.11 New Error Message − ABMCHNFUL 31

 Space Management...
 − SPAMS are enabled
 − Interval is 1089 data pages
 − Current SPAM page count is 1
 − Clump page count is 3
 − Maximum usable SPAM page count is 23328

Storage area "MF_PERS_SEGSTR"
 Area ID number is 8
 Filename is "DISK:[USER.BUGS.14027468]MF_PERS_SEGSTR.RDA;1"
 Access mode is READ/WRITE
 Pages...
 − Page format is uniform
 − Page size is 4 blocks
 − Initial data page count was 402
 − Current physical page count is 403
 − Page checksums are enabled
 − Row level locking is enabled

 Space Management...
 − SPAMS are enabled
 − Interval is 1089 data pages
 − Current SPAM page count is 1
 − Clump page count is 3
 − Maximum usable SPAM page count is 47904

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

Oracle® Rdb for OpenVMS

2.1.11 New Error Message − ABMCHNFUL 32

2.2 SQL Errors Fixed

2.2.1 Unexpected Support of NOT NULL Syntax for
COMPUTED BY Columns

In prior releases of Oracle Rdb, NOT NULL constraints were permitted for COMPUTED BY columns. Such
constraints can never be used because COMPUTED BY columns are not updated during INSERT or
UPDATE statements.

This release of Rdb will report an informational message and ignore such constraints. Any scripts or
applications that include such definitions in a CREATE TABLE or an ALTER TABLE statement may be
modified to remove the NOT NULL definitions.

The following example shows the new behavior. The definition is accepted (for backward compatibility) but
the definition is ignored.

SQL> create table SAMPLE (a integer, b computed by a+1 not null not deferrable);
%SQL−I−NOTNULLNOTCB, Computed column B may not have a NOT NULL constraint −
SAMPLE_B_NOT_NULL ignored
SQL> show table (column) SAMPLE;
Information for table SAMPLE

Columns for table SAMPLE:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
A INTEGER
B BIGINT
 Computed: by a+1

SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.2.2 Unexpected Behavior of SET DISPLAY CHARACTER
SET Statement

Bug 14640028

In prior releases of Oracle Rdb, the SET DISPLAY CHARACTER SET statement did not correctly establish
the character set in the server if it followed a SET AUTOMATIC TRANSLATION ON statement.

The following example shows new correct behavior. Using the SET FLAGS command, we can see that SET
DISPLAY CHARACTER SET statement now implicitly defines the new character set to be used by
AUTOMATIC TRANSLATION.

SQL> set flags 'item_list';
SQL> set automatic translation on;
~H Extension (SQL LEVEL SETUP) Item List: (len=8)
0000 (00000) RDB$K_EXT_LVL_AUTOTRANS "32767"
0007 (00007) RDB$K_INFO_END

2.2 SQL Errors Fixed 33

SQL> set display character set 'dec_mcs';
~H Extension (SQL LEVEL SETUP) Item List: (len=8)
0000 (00000) RDB$K_EXT_LVL_AUTOTRANS "0"
0007 (00007) RDB$K_INFO_END
SQL>

A workaround is to execute the SET DISPLAY CHARACTER SET statement prior to executing the SET
AUTOMATIC TRANSLATION ON statement.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.2.3 Unexpected Stall When Calling External Routines

Bug 13550848

In prior releases of Oracle Rdb, the use of variable constraints, or a STEP clause of the FOR counted loop
could interfere with the correct execution of external functions and procedures. The STEP clause implicitly
declares a local variable with a constraint to ensure that the STEP value is neither NULL nor zero, as those
values would create an infinite loop.

The following example shows the simplest case of this problem.

SQL> create procedure LIB$PUT_OUTPUT
cont> (in :a long varchar by descriptor);
cont> external
cont> name LIB$PUT_OUTPUT
cont> location 'SYS$SHARE:LIBRTL.EXE'
cont> language GENERAL
cont> GENERAL parameter style
cont> ;
SQL>
SQL> begin
cont> declare :s constant integer = 1
cont> check (value is not NULL);
cont> call LIB$PUT_OUTPUT (:s);
cont> end;
...stalled...

This is an example using a FOR counted loop and a STEP clause. If the STEP clause is removed, the
compound statement and its call to the MOD function executes normally.

SQL> set flags 'trace'
SQL> begin
cont> declare :i integer;
cont> for :i in 1 to 10 step 1
cont> do
cont> trace mod(:i, 10);
cont> end for;
cont> end;
...stalled...

RMU/SHOW STATISTICS will report that the process is "waiting for routine" in the Stall Messages display.

Process.ID Since...... T Stall.reason.............................Lock.ID.
20601B3D:1 04:21:53.55 W waiting for routine MOD

Oracle® Rdb for OpenVMS

2.2.3 Unexpected Stall When Calling External Routines 34

In some cases, the process might report an ACCVIO similar to the following.

%SYSTEM−F−ACCVIO, access violation, reason mask=04, virtual
address=000000003FFFFF20, PC=0000000000B9B034, PS=0000001B

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.2.4 Unexpected Query Error COSI−F−INVCLADTY

Bug 15853351

In prior versions of Oracle Rdb, queries might fail with the error COSI−F−INVCLADTY when the table
storage map is defined as PARTITIONING IS NOT UPDATABLE and a sequential access strategy is chosen
for the query. This error occurs when date/time literal values are used to determine the smallest subset of
partitions required for the query. The column being compared to the literal need not be a member of the
partitioning columns.

The following example shows a comparison between a DATE literal value and a TIMESTAMP(2) column.

SQL> set flags 'strategy,detail(2)';
SQL> select * from test where order_date > date'2012−10−20';
Tables:
 0 = TEST
Conjunct: 0.ORDER_DATE > DATE '2012−10−20'
Get Retrieval sequentially of relation 0:TEST (partitioned scan#1)
%RDB−E−CONVERT_ERROR, invalid or unsupported data conversion
−COSI−F−INVCLADTY, invalid class data type combination in descriptor
SQL>

To avoid this problem, the literal can be changed to match the data type of the column, namely,
TIMESTAMP'2012−10−20 00:00:00.00'.

This problem has been corrected in Oracle Rdb Release 7.2.5.3. Oracle Rdb no longer attempts to convert
between different date/time types using OpenVMS conversion routines. Such types are internal to Oracle Rdb
and should not have been processed in this way.

2.2.5 Unexpected BAD_REQ_HANDLE Reported During
Query Compile

Bug 14689425

In prior releases of Oracle Rdb, it was possible that views that referenced SQL functions would fail to
execute. The failure is reported as BAD_REQ_HANDLE in this example.

SQL> select * from PROBLEM_VIEW;
%RDB−E−RTN_FAIL, routine "(unknown)" failed to compile or execute successfully
−RDB−E−BAD_REQ_HANDLE, invalid request handle
SQL>

This problem occurs because an attempt is made to evaluate a function during query strategy generation. Such
functions will be defined as (or default to) NOT DETERMINISTIC and be passed no parameters, or only
constant literal parameters.

Oracle® Rdb for OpenVMS

2.2.4 Unexpected Query Error COSI−F−INVCLADTY 35

One workaround is to use the ALTER FUNCTION ... COMPILE option to ensure those functions are
compiled before the query is executed and ready to execute by querying the view.

SQL> alter function PARAM_VALUE compile;
SQL> alter function COMP_NEXT_DAY compile;
SQL> select * from PROBLEM_VIEW;
0 rows selected
SQL>

An alternate workaround is to modify the function to be NOT DETERMINISTIC. This will exclude it from
pre−evaluation in the optimizer.

SQL> alter function COMP_NEXT_DAY not deterministic;

The side effect of this change is possibly less optimal query solutions for some queries.

This problem has been corrected in Oracle Rdb Release 7.2.5.3. The Rdb query compiler now ensures that
views are processed to compile referenced functions before the Rdb optimizer uses them.

2.2.6 Multiple Alias References Not Detected for Sequences

Bug 16185966

In prior releases of Oracle Rdb, attempts to reference sequences from multiple databases in the same query
would not be correctly detected. Instead the referenced alias was ignored and the similarly named sequence in
the target databases was used or an OBSOLETE_METADATA error was reported.

The following example shows these cases.

SQL> select test1.test_sequence.nextval, test2.test_sequence.nextval
cont> from test1.rdb$database;

 322 322
1 row selected
SQL>
SQL> select test2.new_sequence.nextval from test1.rdb$database;
%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−E−SEQNEXTS, sequence "NEW_SEQUENCE" does not exist in this database
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.3. SQL now correctly processes the alias on
sequence references and prevents those references if they span multiple databases. Such errors will now
produce an ONLONEDB error.

SQL> select test1.test_sequence.nextval, test2.test_sequence.nextval
cont> from test1.rdb$database;
%SQL−F−ONLONEDB, Only one database can be referred to in this statement

2.2.7 Unexpected RDMS−E−SEQNEXTS Error Reported
When GRANT or REVOKE is Used on View

Bugs 16291753 and 16343330

Oracle® Rdb for OpenVMS

2.2.6 Multiple Alias References Not Detected for Sequences 36

Starting with Oracle Rdb Release 7.2.5.1, GRANT and REVOKE statements on tables with IDENTITY
columns propagate these actions to the associated sequence that implements the IDENTITY for the table.
Unfortunately, some nested view definitions are erroneously flagged as having identity sequences (these are
actually reflections of the base table reference) and GRANT or REVOKE statements may fail.

The following example shows this behavior.

SQL> create table TAB (a integer identity);
SQL> create view VIW0 as select * from TAB;
SQL> create view VIW1 as select * from VIW0;
SQL> grant select on table * to smithi;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−E−SEQNEXTS, sequence "VIW0" does not exist in this database
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.3. Oracle Rdb no longer erroneously processes
views that reference tables with identities.

2.2.8 Unexpected SQL−F−BADCORATT Error Reported by
IMPORT DATABASE

In prior releases of Oracle Rdb, it is possible for the IMPORT to fail with SQL−F−BADCORATT error. This
occurs under the following circumstances:

The database is defined with PROTECTION IS ANSI.•
There are standalone external functions defined which are referenced by tables.•
These references require forward references so that the IMPORT DATABASE can proceed.•

The following shows an example of the reported error.

SQL> import database
cont> from ABC_EXP
cont> filename ABC
cont> ;
%SQL−F−BADCORATT, invalid core attribute 00, 14 in .RBR file
%COSI−F−BUGCHECK, internal consistency failure

This problem has been corrected in Oracle Rdb Release 7.2.5.3. The FORWARD_REFERENCES
information includes the access control information for the routine that is to be declared at the start of the
IMPORT DATABASE operation. This information is not ignored by the IMPORT DATABASE statement.

2.2.9 Rows Returned in the Wrong Order From Sorted Tactic
During Bitmapped Scan

In some cases where the table cardinality is small and BITMAPPED SCAN is enabled, the selected Sorted
strategy might be abandoned and rows returned in an unsorted order.

The following query, equivalent to the SHOW FUNCTIONS command, returns the routine names in the
wrong order when the 'BITMAPPED SCAN' is enabled and using SORTED RANKED indices.

Oracle® Rdb for OpenVMS

2.2.8 Unexpected SQL−F−BADCORATT Error Reported by IMPORT DATABASE 37

set flags 'bitmapped_scan';

select
 R.RDB$ROUTINE_NAME,
 (select M.RDB$MODULE_NAME
 from Rdb$MODULES M
 where M.RDB$MODULE_ID = R.RDB$MODULE_ID)
from
 Rdb$ROUTINES R
where
 R.Rdb$ROUTINE_ID > 0
order by R.Rdb$ROUTINE_NAME;
 RDB$ROUTINE_NAME
 TEST_WITHIN_DOMAIN TEST_DOMAIN_MODULE
 TEST_TABLE TEST_TABLE_MODULE
 TEST_FUNC TEST_FUNCTION_MODULE
3 rows selected

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.2.10 Unexpected RDMS−E−MAPLIMITORDBAD Error After
Using ALTER DATABASE ... DROP STORAGE AREA ...
CASCADE

Bug 16532358

In prior releases of Oracle Rdb, the ALTER DATABASE ... DROP STORAGE AREA ... CASCADE may
implicitly drop a storage map if all storage areas referenced by that map are dropped. Unfortunately, in this
case insufficient knowledge remains to locate and drop the storage mapping function created for the map and
stored in Rdb$STORAGE_MAPS system module.

In such cases, a subsequent attempt to recreate the storage map with different partitioning limits attempts to
re−use this (now) stale mapping routine. This could lead to the following error.

%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−MAPNOTDEF, map "TEST_MAP" has not been defined
−RDMS−E−MAPLIMITORDBAD, partition 1 limits are not in order for partitioned
table TEST_MAP

If the CREATE STORAGE MAP statement is preceded with a SET FLAGS 'STOMAP_STATS' statement,
then a diagnostic message will point out the existence of a mapping routine.

SQL> create storage map TEST_MAP for TEST_TBL
cont> partitioning is not updatable
cont> placement via index TEST_IDX
cont> store
cont> using (col1)
cont> in TEST3 with limit of ('BB')
cont> in TEST4 with limit of ('CC');
~As: create storage map "TEST_MAP"
~As: Table "TEST_TBL" (sys=0, rest=0, tmptbl=0)
~As: found user defined routine named TEST_MAP − mapping routine not created
~As: Validation of Partition Ordering for Storage Map "TEST_MAP" on Table
"TEST_TBL"
~As: using function "TEST_MAP" to check vertical partition #1
%RDB−E−NO_META_UPDATE, metadata update failed

Oracle® Rdb for OpenVMS

2.2.10 Unexpected RDMS−E−MAPLIMITORDBAD Error After Using ALTER DATABASE ... DROP STORAGE AREA ... CASCADE38

−RDMS−F−MAPNOTDEF, map "TEST_MAP" has not been defined
−RDMS−E−MAPLIMITORDBAD, partition 1 limits are not in order for partitioned
table TEST_MAP

A workaround for this problem is to first create a simple storage map that does not use WITH LIMIT TO
clauses and then immediately drop that storage map. This has the side effect of removing the stale storage
mapping routine.

This problem has now been corrected. The CREATE STORAGE MAP statement will now remove any old
mapping routines matching the name of the storage map in the Rdb$STORAGE_MAPS module. If a routine
exists with this name in a user defined module, it will not be deleted.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.2.11 IMPORT DATABASE Statement Was Ignoring NOTIFY
IS DISABLED Clause

Bug 16869690

In prior releases of Oracle Rdb, the IMPORT DATABASE statement would ignore the NOTIFY IS
DISABLED clause.

The following example shows that NOTIFY remains enabled after the IMPORT DATABASE statement.

SQL> create database
cont> filename TESTING
cont> notify is ENABLED
cont> ;
SQL>
SQL> export database
cont> filename TESTING
cont> into TESTING_EXP
cont> ;
SQL>
SQL> import database
cont> from TESTING_EXP
cont> filename TESTING
cont> notify is disabled
cont> ;
SQL>
SQL> show database *
Default alias:
 Oracle Rdb database in file TESTING
.
.
.
 Notification: Enabled
 Operator Class:
 Central
 Cluster
.
.
.

A workaround for this problem is to follow the IMPORT DATABASE statement with an ALTER

Oracle® Rdb for OpenVMS

2.2.11 IMPORT DATABASE Statement Was Ignoring NOTIFY IS DISABLED Clause 39

DATABASE FILENAME ... NOTIFY IS DISABLED statement.

This problem has been corrected in Oracle Rdb Release 7.2.5.3. The NOTIFY IS DISABLED is now correctly
handled by the IMPORT DATABASE statement.

2.2.12 Unexpected RDB−E−INVALID_BLR Error Produced
When ALTERNATE_OUTLINE_ID Is Active

Bug 16893170

In prior releases of Oracle Rdb, an unexpected INVALID_BLR error might be generated when the flag
ALTERNATE_OUTLINE_ID was active for the session. This is set either using RDMS$SET_FLAGS logical
or the SET FLAGS statement.

The following example shows the error being raised.

SQL> create database
cont> filename ABC;
SQL>
SQL> create table TEST_T (c1 char(32) not null deferrable);
SQL> set flags 'alternate_outline_id(literals)';
SQL> insert into TEST_T values ('kapow');
%RDB−E−INVALID_BLR, request BLR is incorrect at offset 17
SQL>
SQL> commit;

The problem occurs when the referenced constraint is being processed.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

Oracle® Rdb for OpenVMS

2.2.12 Unexpected RDB−E−INVALID_BLR Error Produced When ALTERNATE_OUTLINE_ID Is Active40

2.3 RMU Errors Fixed

2.3.1 RMU/VERIFY/NOROOT Access Violation Verifying
Client Sequences

Bug 14323013

If Client Sequences were defined in the Oracle Rdb database root, an access violation could occur when
verifying the Client Sequences if the /NOROOT qualifier was specified for the RMU/VERIFY. This problem
occurred when verifying that Client Sequence entries in the database root were consistent with the Client
Sequences defined in the RDB$SEQUENCES system table. The only way to avoid this problem was to
specify "/ROOT", the default, when verifying the database.

This problem has been fixed and now when the /NOROOT qualifier is specified for the RMU/VERIFY of a
database with Client Sequences defined, the access violation will not occur when verifying that Client
Sequence entries in the database root are consistent with the Client Sequences defined in the
RDB$SEQUENCES system table.

The following example shows the problem. The TEST_DATABASE database being verified using the
/NOROOT qualifier has a system access violation while verifying the Client Sequences defined in the
database root with the Client Sequences defined in the RDB$SEQUENCES system table, outputs a dump file,
and aborts the verification. If /ROOT (the default) had been specified for the RMU/VERIFY, the same
diagnostic messages would have been output but no access violation would have occurred and the verify
would have completed.

$ RMU/VERIFY/NOLOG −
 /NOROOT −
 /TRANSACTION_TYPE=READ_ONLY −
 /INDEXES −
 /DATA −
 DEVICE:[DIRECTORY]TEST_DATABASE.RDB

%RMU−E−NOSEQROW, sequence id 23 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 25 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 26 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 27 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 28 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 29 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 30 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 36 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 57 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 58 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 59 has an entry in the root file but no row in

2.3 RMU Errors Fixed 41

RDB$SEQUENCES
%RMU−F−ABORTVER, fatal error encountered; aborting verification
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
 virtual address=0000000000F86000, PC=000000000051CDA4, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file DEVICE:[DIRECTORY]RMUBUGCHK.DMP;
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 18−JUL−2012 15:40:36.13
$ TYPE DEVICE:[DIRECTORY]RMUBUGCHK.DMP

==
 Stack Dump Summary
==

***** Exception at 000000000051CDA4 : RMU721\RMUVERRDB$DB_QUERY + 000009B4
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000000F86000, PC=000000000051CDA4, PS=0000001B
Saved PC = 00000000003C1038 : RMU721\RMUVER$VERIFY + 000002F8
Saved PC = 00000000003B9784 : RMU721\RMU$VERIFY + 00001894
Saved PC = 00000000003B2794 : RMU721\RMU_DISPATCH + 00001554
Saved PC = 00000000003B0E0C : RMU721\RMU_STARTUP + 000004DC
Saved PC = 00000000001F0F24 : RMU721\RMU$MAIN + 00000034
Saved PC = 000000007AECF5D8 : Image DCL + 000935D8

The following example shows that this problem has been fixed. The TEST_DATABASE being verified using
the /NOROOT qualifier does not have a system access violation while verifying the Client Sequences defined
in the database root with the Client Sequences defined in the RDB$SEQUENCES system table and the
database verify runs to completion.

$ RMU/VERIFY/NOLOG −
 /NOROOT −
 /TRANSACTION_TYPE=READ_ONLY −
 /INDEXES −
 /DATA −
 DEVICE:[DIRECTORY]TEST_DATABASE.RDB

%RMU−E−NOSEQROW, sequence id 23 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 25 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 26 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 27 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 28 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 29 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 30 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 36 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 57 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 58 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−E−NOSEQROW, sequence id 59 has an entry in the root file but no row in
RDB$SEQUENCES
%RMU−I−REBLDSPAM, Space management (SPAM) pages should be rebuilt for
 logical area TEST_AREA,
 logical area id 4474

Oracle® Rdb for OpenVMS

2.3 RMU Errors Fixed 42

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.3.2 Missing Delimiters in Definitions Generated by RMU
Extract

Bug 14779346

In prior releases of Oracle Rdb, RMU Extract failed to add quotes around some object names that required
them.

The SQL syntax generated for the ALTER TABLE ... ALTER COLUMN statement did not correctly
delimit the column name.

•

If a database used a character set other than DEC_MCS or ISOLATIN1, then names with leading
digits were not delimited.

•

The following example shows these two problems.

$ RMU/EXTRACT/ITEM=TABLE TESTDB/OP=(NOHEADER,FILENAME_ONLY)
set verify;
set language ENGLISH;
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001, TIME 001;
attach 'filename TESTDB';
set default character set 'DEC_KANJI';
set literal character set 'DEC_KANJI';
set identifier character set 'DEC_KANJI';
set national character set 'DEC_KANJI';
set character length 'octets';
create table TEST1 (
 TEST#
 INTEGER
 constraint "TEST1_UNIQUE_TEST#"
 unique
 initially immediate not deferrable);

commit work;

These problems have been corrected in Oracle Rdb Release 7.2.5.3.

2.3.3 Unexpected ACCVIO from RMU Load When
Constraint=DEFERRED is Used

Bug 15974633

In prior releases of Oracle Rdb, the use of the /CONSTRAINT=DEFERRED qualifier for RMU Load might
result in an unending display of SYSTEM−F−ACCVIO errors and RMU bugchecks. This occurs when some
portion of the RMU Load inputs are invalid, such as an incorrect number of columns being loaded. The
reporting of the error causes RMU to erroneously try to verify the deferred constraints.

The following example shows this.

Oracle® Rdb for OpenVMS

2.3.2 Missing Delimiters in Definitions Generated by RMU Extract 43

$ RMU /LOAD /COMMIT=1000 /CONS=DEFERRED −
/RECORD=(FILE=TSTDATA.RRD, FORMAT=DELIMIT, −
TERM="#", PREFIX="""", SUFFIX="""", NULL="", EXCEPT=TST.LOG) −
tstdata Tstrec tstdata.DAT
 DEFINE FIELD fld1 DATATYPE IS TEXT SIZE IS 6.
 DEFINE FIELD fld2 DATATYPE IS TEXT SIZE IS 13.
 DEFINE FIELD fld3 DATATYPE IS TEXT SIZE IS 13.
 DEFINE FIELD fld4 DATATYPE IS TEXT SIZE IS 13.
 DEFINE FIELD fld5 DATATYPE IS TEXT SIZE IS 13.
 DEFINE FIELD fld6 DATATYPE IS TEXT SIZE IS 13.
 DEFINE FIELD fld7 DATATYPE IS TEXT SIZE IS 13.
 define record tstrec.
 fld1.
 fld2.
 fld3.
 fld4.
 fld5.
 fld6.
 fld7.
 end tstrec record.

%RMU−F−FLDMUSMAT, Specified fields must match in number and datatype with the
unloaded data
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=0000000000000000, PC=0000000000465708, PS=0000001B
%RMU−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RMUBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=0000000000000000, PC=0000000000465708, PS=0000001B
%RMU−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RMUBUGCHK.DMP;
...

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.3.4 RMU Did Not Sufficiently Verify the Database LOGFIL
Structure

Bug 16169868

The LOGFIL structure in the Oracle Rdb database root file contains entries for different Rdb server log files.
These entries can be initialized by the RMU/SET SERVER COMMAND. RMU/VERIFY did not verify the
LOGFIL structure entries when it verified the database root. RMU/BACKUP did not verify the LOGFIL
structure entries in the root before backing them up. RMU/RESTORE did not validate the LOGFIL structure
entries in the RMU/BACKUP *.RBF backup file when restoring them. If LOGFIL entries were corrupt,
bugchecks could occur when LOGFIL entries were accessed. No diagnostics were output which indicated the
cause of the problem. Corruption of the LOGFIL entries in the database root could only be detected by an
RMU/DUMP/HEADER of the database root file, an RMU/DUMP/BACKUP/OPTION=DEBUG of the
backup *.RBF file, or by examining the RMUBUGCHK.DMP file created due to LOGFIL entry corruption.

This problem has been fixed and now the Rdb database LOGFIL entries are verified when the Rdb database
root is verified, as well as the references to the LOGFIL structure in the database KROOT structure. This
occurs both when the RMU/VERIFY command is executed and when the RMU/BACKUP command is
executed. In addition, a consistency check is now done by RMU/RESTORE of the LOGFIL entries in the
backup file.

Oracle® Rdb for OpenVMS

2.3.4 RMU Did Not Sufficiently Verify the Database LOGFIL Structure 44

The following example shows the problem. Since there was no code in RMU/RESTORE to validate the
LOGFIL structure entries in the backup *.RBF file, RMU/RESTORE trusted an invalid log file entry type and
this caused a system access violation. There also was no code in RMU/VERIFY or RMU/BACKUP to detect
this LOGFIL structure corruption.

$ RMU/RESTORE/DIR=DEVICE:[TEST_DIR]/NOCDD/NOLOG TESTDB.RBF
%SYSTEM−F−ACCVIO, access violation, reason mask=04, virtual
 address=0000000000E21EB0, PC=FFFFFFFF81111A90, PS=0000001B
%RMU−I−BUGCHKDMP, generating bugcheck dump file DEVICE:[DIR]RMUBUGCHK.DMP;
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 31−JAN−2013 14:09:36.78
$ TYPE DEVICE:[DIR]RMUBUGCHK.DMP

==
 Stack Dump Summary
==

***** Exception at FFFFFFFF81111A90 : Image LIBOTS + 00021A90
%SYSTEM−F−ACCVIO, access violation, reason mask=04, virtual
 address=0000000000E21EB0, PC=FFFFFFFF81111A90, PS=0000001B
Saved PC = 0000000000360E74 : RMU72\RMUIO$DEBLOCK + 000007E4
Saved PC = 00000000003C3B64 : RMU72\RMURES$DUMP_SUMMARY_STATS + 000011E4
Saved PC = 00000000003C52CC : RMU72\RMURES$BF_RESTORE_THREAD + 0000022C
Saved PC = 00000000001F02FC : RMU72\RMUIO$TERMINATE_THREAD + 00000040
Saved PC = 00000000001F04B8 : RMU72\RMUIO$FIREWALL + 00000040
Saved PC = 00000000001F0478 : RMU72\RMUIO$FIREWALL + 00000000
Saved PC = 00000000003DE794 : RMU72\RMU_DISPATCH + 00000F84
Saved PC = 00000000003DD3DC : RMU72\RMU_STARTUP + 000004FC
Saved PC = 00000000001F0F24 : RMU72\RMU$MAIN + 00000034
Saved PC = 000000007AECF5D8 : Image DCL + 000935D8

The following example shows that RMU/RESTORE now does a basic validation of LOGFIL structure log file
entries in the backup *.RBF file and aborts the restore operation if unrecoverable corruption is found.

$ RMU/RESTORE/DIR=DEVICE:[TEST_DIR]/NOCDD TESTDB.RBF
%RMU−F−INVLGFLTYPE, Invalid LOGFIL entry type of 301992960 in database root
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 31−JAN−2013 14:22:54.56
$ RMU/RESTORE/DIR=DEVICE:[TEST_DIR]/NOCDD TESTDB_2.RBF
%RMU−F−INVLGFLCNT, Invalid LOGFIL count of 3 in database root − expected 16
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 31−JAN−2013 14:22:54.56

The following example shows that RMU/VERIFY now verifies the LOGFIL structure log file entries in the
database root. Previously, the LOGFIL structure was not verified.

$ RMU/VERIFY/ROOT/NOLOG TESTDB_3
%RMU−E−ROOLGFLCT, root "DEV:[TEST_DIR]TESTDB_3.RDB;1",
 contains an invalid log file count
 expected: 16, found: 3
%RMU−E−ROOLGFLTP, root "DEV:[TEST_DIR]TESTDB_3.RDB;1",
 contains an invalid log file type
 in log file entry 5
 expected: 4, found: 301992960
RMU−W−ROOERRORS, 2 errors encountered in root verification

The following example shows that RMU/BACKUP now verifies the LOGFIL structure log file entries in the
database root when it calls RMU/VERIFY to verify the database root at the start of the backup operation and

Oracle® Rdb for OpenVMS

2.3.4 RMU Did Not Sufficiently Verify the Database LOGFIL Structure 45

aborts the restore operation if unrecoverable corruption is found.

$ RMU/BACKUP/NOLOG TESTDB_4 TESTDB_4.RBF
%RMU−E−ROOLGFLCT, root "DEV:[TEST_DIR]TESTDB_4.RDB;1",
 contains an invalid log file count
 expected: 16, found: 3
%RMU−E−ROOLGFLTP, root "DEV:[TEST_DIR]TESTDB_4.RDB;1",
 contains an invalid log file type
 in log file entry 5
 expected: 4, found: 301992960
%RMU−F−ABORTVER, fatal error encountered; aborting verification
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 31−JAN−2013 18:16:55.01

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.3.5 RMU/BACKUP/ONLINE/NOQUIET Did Not Backup the
Root Log File Entries

Bug 16169868

The LOGFIL structure in the Oracle Rdb database root file contains entries for different Rdb server log files.
These entries can be initialized by the RMU/SET SERVER COMMAND. Due to a problem with an
RMU/BACKUP/ONLINE/NOQUIET backup, the log file entries in the root were not backed up to the *.RBF
backup file. When the database was restored, the root log file entries were not corrupt but were missing and
had to be redefined. This only happened if RMU/BACKUP/ONLINE/NOQUIET was specified for the
backup.

This problem has been fixed and now RMU/BACKUP/ONLINE/NOQUIET correctly backs up the LOGFIL
log file entries in the database root so that they are all restored correctly.

The following example shows the problem. A database is created and the RMU/SET SERVER command is
used to create log file entries in the database root. A search of the database header before the database is
backed up shows the six log file entries in the root. The database is then backed up using the
RMU/BACKUP/ONLINE/NOQUIET command. A dump of the backup *.RBF file is then made. A search of
the dump of the backup file shows that the six log file entries in the root have not been put in the backup
*.RBF file. After the database is restored, a search of the database header shows that the six log file entries are
missing from the root file of the restored database.

$ SQL
 CREATE DATABASE FILENAME TESTDB.RDB;
 EXIT
$ RMU /SET SERVER ABS/OUT=MY.ABS /NOLOG TESTDB.RDB
$ RMU /SET SERVER ALS/OUT=MY.ABS /NOLOG TESTDB.RDB
$ RMU /SET SERVER DBR/OUT=MY.DBR /NOLOG TESTDB.RDB
$ RMU /SET SERVER LCS/OUT=MY.LCS /NOLOG TESTDB.RDB
$ RMU /SET SERVER LRS/OUT=MY.LRS /NOLOG TESTDB.RDB
$ RMU /SET SERVER RCS/OUT=MY.RCS /NOLOG TESTDB.RDB
$ RMU /DUMP /HEADER /OUT=TESTDBBCKBAD.HDR TESTDB.RDB
$ SEAR TESTDBBCKBAD.HDR "LOG FILE #"
 Log File #5. is active
 Log File #6. is active
 Log File #7. is active
 Log File #8. is active
 Log File #9. is active
 Log File #10. is active

Oracle® Rdb for OpenVMS

2.3.5 RMU/BACKUP/ONLINE/NOQUIET Did Not Backup the Root Log File Entries 46

$ RMU/BACKUP/ONLINE/NOQUIET/NOLOG TESTDB.RDB TESTDB.RBF
$ RMU/DUMP/BACKUP/OPTION=DEBUG/OUTPUT=TESTDBONLBCKBAD.DMP TESTDB.RBF
$ SEAR TESTDBONLBCKBAD.DMP "LOGFIL LIST ENTRY"
%SEARCH−I−NOMATCHES, no strings matched
$ SQL
 DROP DATABASE FILENAME TESTDB.RDB;
 EXIT
$ RMU/RESTORE/NOCDD/NOLOG TESTDB.RBF
$ RMU /DUMP /HEADER /OUT=TESTDBRESBAD.HDR TESTDB.RDB
$ SEAR TESTDBRESBAD.HDR "LOG FILE #"
%SEARCH−I−NOMATCHES, no strings matched

The following example shows that the problem has been fixed. A database is created and the RMU/SET
SERVER command is used to create log file entries in the database root. A search of the database header
before the database is backed up shows the six log file entries in the root. The database is then backed up
using the RMU/BACKUP/ONLINE/NOQUIET command. A dump of the backup *.RBF file is then made. A
search of the dump of the backup file shows that the six log file entries in the root have now been put in the
backup *.RBF file. After the database is restored, a search of the database header shows that the six log file
entries have been restored correctly to the root file of the restored database.

$ SQL
 CREATE DATABASE FILENAME TESTDB;
 EXIT
$ RMU /SET SERVER ABS/OUT=MY.ABS /NOLOG TESTDB.RDB
$ RMU /SET SERVER ALS/OUT=MY.ABS /NOLOG TESTDB.RDB
$ RMU /SET SERVER DBR/OUT=MY.DBR /NOLOG TESTDB.RDB
$ RMU /SET SERVER LCS/OUT=MY.LCS /NOLOG TESTDB.RDB
$ RMU /SET SERVER LRS/OUT=MY.LRS /NOLOG TESTDB.RDB
$ RMU /SET SERVER RCS/OUT=MY.RCS /NOLOG TESTDB.RDB
$ RMU /DUMP /HEADER /OUT=TESTDBBCKGOOD.HDR TESTDB
$ SEAR TESTDBBCKGOOD.HDR "LOG FILE #"
 Log File #5. is active
 Log File #6. is active
 Log File #7. is active
 Log File #8. is active
 Log File #9. is active
 Log File #10. is active
$ RMU/BACKUP/ONLINE/NOQUIET/NOLOG TESTDB.RDB TESTDB.RBF
$ RMU/DUMP/BACKUP/OPTION=DEBUG/OUTPUT=TESTDBONLBCKGOOD.DMP TESTDB.RBF
$ SEAR TESTDBONLBCKGOOD.DMP "LOGFIL LIST ENTRY"
LOGFIL list entry
LOGFIL list entry
LOGFIL list entry
LOGFIL list entry
LOGFIL list entry
LOGFIL list entry
$ SQL
 DROP DATABASE FILENAME TESTDB;
 EXIT
$ RMU/RESTORE/NOCDD/NOLOG TESTDB.RBF
$ RMU /DUMP /HEADER /OUT=TESTDBRESGOOD.HDR TESTDB.RDB
$ SEAR TESTDBRESGOOD.HDR "LOG FILE #"
 Log File #5. is active
 Log File #6. is active
 Log File #7. is active
 Log File #8. is active
 Log File #9. is active
 Log File #10. is active

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

Oracle® Rdb for OpenVMS

2.3.5 RMU/BACKUP/ONLINE/NOQUIET Did Not Backup the Root Log File Entries 47

2.3.6 Unexpected RMU−F−NOSNAPS Error From RMU
Collect Optimizer_Statistics

In prior releases of Oracle Rdb, the RMU Collect Optimizer_Statistics command would fail if the target
database had SNAPSHOTS disabled. The default transaction mode is AUTOMATIC which should account
for this state and only start READ WRITE transactions.

The following example shows the unexpected error.

$ RMU/COLLECT OPTIMIZER_STATISTICS/STAT=CARDINALITY DEBIT_CREDIT
Start loading tables... at 10−FEB−2013 21:08:35.89
Done loading tables.... at 10−FEB−2013 21:08:35.91
Start loading indexes... at 10−FEB−2013 21:08:35.91
Done loading indexes.... at 10−FEB−2013 21:08:35.92
%RMU−F−NOSNAPS, snapshots are not allowed or not enabled for area
USER1:[TESTER]DEBIT_CREDIT.RDA;1
%RMU−F−FTL_COL_STAT, Fatal error for COLLECT OPTIMIZER_STATISTICS operation
at 10−FEB−2013 21:08:35.93

This problem has been corrected in Oracle Rdb Release 7.2.5.3. RMU now correctly handles a database with
snapshots disabled.

2.3.7 Encrypted Parallel Backup Files Could Not Be
Restored Or Dumped

Bug 16355377

Encrypted parallel backup RBF files could not be restored or dumped because of an RMU/RESTORE and
RMU/DUMP/BACKUP problem decrypting encrypted backup files created by a parallel backup of an Oracle
Rdb database. The backup files were encrypted correctly. The problem was only with the decryption of the
database backup files produced by a parallel backup.

This problem has now been fixed and encrypted database parallel backup files can now be restored by
RMU/RESTORE and dumped by RMU/DUMP/BACKUP. Fixing this problem requires storing the
information that encrypted backup files are being created by a parallel backup in the backup files created
when the RMU/BACKUP/PARALLEL command is executed. To allow encrypted backup files produced by
parallel backups in previous versions of RDB to be correctly decrypted, a new PARALLEL_BACKUP option
has been added to the existing /ENCRYPT qualifier options that can only be used with the RMU/RESTORE
and RMU/DUMP/BACKUP commands. This new option cannot be negated.

/ENCRYPT=(PARALLEL_BACKUP,...)

This new option should only be used for encrypted backup files created by parallel backups executed in
previous versions of Rdb. It should not be used for encrypted backup files created by parallel backups in this
version (Rdb 7.2.5.3) or future versions of Rdb (such as the 7.3 versions).

The following example shows the problem. The parallel backup command correctly encrypts the backup file
saveset MFP.RBF and MFP01.RBF produced by a parallel backup of the MF_PERSONNEL database, but
because of the decryption problem both an RMU/DUMP/BACKUP command and an RMU/RESTORE
command get errors when they try to decrypt the second encrypted file of the parallel backup saveset,

Oracle® Rdb for OpenVMS

2.3.6 Unexpected RMU−F−NOSNAPS Error From RMU Collect Optimizer_Statistics 48

MFP01.RBF.

$ RMU/BACKUP/ENCRYPT=(NAME=TEST_KEY)/PARALLEL=(EXECUTOR_COUNT=2) −
 /EXTEND=64000/DISK_FILE=(WRITER_THREADS=2) −
 /PAGE_BUFFERS=5/ONLINE/QUIET_POINT −
 /LIST_PLAN=MFP.PLAN/NOLOG −
 DEVICE:[TEST.PARBCK.DB]MF_PERSONNEL.RDB −
 DEVICE:[TEST.PARBCK.B1]MFP.RBF, −
 DEVICE:[TEST.PARBCK.B2]
$ RMU/DUMP/BACKUP/ENCRYPT=(NAME=TEST_KEY)/DISK_FILE/OPTION=DEBUG −
 /OUTPUT=PARBCKDMP.DMP −
 DEVICE:[TEST.PARBCK.B1]MFP.RBF, −
 DEVICE:[TEST.PARBCK.B2]
%RMU−E−INVRECSIZ, invalid record size in backup file
%RMU−F−FATALERR, fatal error on DUMP_BACKUP
%RMU−F−FTL_DUMP, Fatal error for DUMP operation at 5−MAR−2013 11:24:16.44
$ RMU/RESTORE/ENCRYPT=(NAME=TEST_KEY)/NOCDD/DISK_FILE=READER_THREADS=1/NOLOG −
 /DIR=DEVICE:[TEST.PARBCK] −
 /ROOT=DEVICE:[TEST.PARBCK]MF_PERSONNEL.RDB −
 /NOAIJ/NORECOVERY −
 DEVICE:[TEST.PARBCK.B1]MFP.RBF, −
 DEVICE:[TEST.PARBCK.B2]
%RMU−E−READERR, error reading DEVICE:[TEST.PARBCK.B2]MFP01.RBF;
−RMU−E−BLOCKCRC, software block CRC error
%RMU−E−READERR, error reading DEVICE:[TEST.PARBCK.B2]MFP01.RBF;
−RMU−E−BLOCKCRC, software block CRC error
%RMU−E−INVRECSIZ, invalid record size in backup file
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 5−MAR−2013 11:24:24.67

The following example shows that this problem has been fixed. Now both the RMU/DUMP/BACKUP
command and the RMU/RESTORE command succeed when they decrypt the two files of the parallel backup
saveset, MFP.RBF and MFP01.RBF.

$ RMU/BACKUP/ENCRYPT=(NAME=TEST_KEY)/PARALLEL=(EXECUTOR_COUNT=2) −
 /EXTEND=64000/DISK_FILE=(WRITER_THREADS=2) −
 /PAGE_BUFFERS=5/ONLINE/QUIET_POINT −
 /LIST_PLAN=MFP.PLAN/NOLOG −
 DEVICE:[TEST.PARBCK.DB]MF_PERSONNEL.RDB −
 DEVICE:[TEST.PARBCK.B1]MFP.RBF, −
 DEVICE:[TEST.PARBCK.B2]
$ RMU/DUMP/BACKUP/ENCRYPT=(NAME=TEST_KEY)/DISK_FILE/OPTION=DEBUG −
 /OUTPUT=PARBCKDMP.DMP −
 DEVICE:[TEST.PARBCK.B1]MFP.RBF, −
 DEVICE:[TEST.PARBCK.B2]
$ RMU/RESTORE/ENCRYPT=(NAME=TEST_KEY)/NOCDD/DISK_FILE=READER_THREADS=1/NOLOG −
 /DIR=DEVICE:[TEST.PARBCK] −
 /ROOT=DEVICE:[TEST.PARBCK]MF_PERSONNEL.RDB −
 /NOAIJ/NORECOVERY −
 DEVICE:[TEST.PARBCK.B1]MFP.RBF, −
 DEVICE:[TEST.PARBCK.B2]
$

The following example shows the new PARALLEL_BACKUP option that can only be specified with the
/ENCRYPT qualifier used with the RMU/RESTORE and RMU/DUMP/BACKUP commands. This option
should only be specified for parallel backup RBF files created by previous versions of Rdb. It is not necessary
to use this option for this and future versions of Rdb.

$ RMU/BACKUP/ENCRYPT=(NAME=TEST_KEY)/PARALLEL=(EXECUTOR_COUNT=2) −

Oracle® Rdb for OpenVMS

2.3.6 Unexpected RMU−F−NOSNAPS Error From RMU Collect Optimizer_Statistics 49

 /EXTEND=64000/DISK_FILE=(WRITER_THREADS=2) −
 /PAGE_BUFFERS=5/ONLINE/QUIET_POINT −
 /LIST_PLAN=MFP.PLAN/NOLOG −
 DEVICE:[TEST.PARBCK.DB]MF_PERSONNEL.RDB −
 DEVICE:[TEST.PARBCK.B1]MFP.RBF, −
 DEVICE:[TEST.PARBCK.B2]
$ RMU/DUMP/BACKUP/ENCRYPT=(NAME=TEST_KEY,PARALLEL_BACKUP)/DISK_FILE
 /OPTION=DEBUG −
 /OUTPUT=PARBCKDMP.DMP −
 DEVICE:[TEST.PARBCK.B1]MFP.RBF, −
 DEVICE:[TEST.PARBCK.B2]
$ RMU/RESTORE/ENCRYPT=(NAME=TEST_KEY,PARALLEL_BACKUP)/NOCDD
 /DISK_FILE=READER_THREADS=1/NOLOG −
 /DIR=DEVICE:[TEST.PARBCK] −
 /ROOT=DEVICE:[TEST.PARBCK]MF_PERSONNEL.RDB −
 /NOAIJ/NORECOVERY −
 DEVICE:[TEST.PARBCK.B1]MFP.RBF, −
 DEVICE:[TEST.PARBCK.B2]
$

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.3.8 Character Set Restriction on ORDER_BY_NAME
Option Has Been Removed

Bug 16496618

In prior releases of Oracle Rdb, the RMU Extract command would ignore the Option=Order_By_Name when
the identifier character set for the database was not ASCII, DEC_MCS or one of the ISOLATIN character
sets.

This restriction was unnecessary because SQL restricts the storage area names to be strictly uppercase ASCII.
Therefore, this restriction has been removed from RMU Extract.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.3.9 RMU/DUMP/BACKUP Could Output Invalid Data Page
TSN Numbers

The RMU/DUMP/BACKUP command could output invalid Oracle Rdb data page transaction sequence
identifier (TSN) numbers which did not match TSN numbers actually stored in the database backup (RBF) file
created by the RMU/BACKUP command. This happened because information in the data page tail needed for
correctly formatting the TSN numbers could be incorrectly accessed by the RMU/DUMP/BACKUP
command. This problem was only a problem with the data page TSN numbers output by
RMU/DUMP/BACKUP. The data page TSN numbers stored in the backup file and on the backed up database
pages were valid.

This problem has been fixed. Now all the data page TSN numbers output by the RMU/DUMP/BACKUP
command are valid and match the data page TSN numbers stored in the database backup file.

The following example shows the problem. Note that only data which directly demonstrates this problem is
shown in this example. The TSNs in the data page TSN line index and the data page tail shown in the dump of

Oracle® Rdb for OpenVMS

2.3.8 Character Set Restriction on ORDER_BY_NAME Option Has Been Removed 50

the backup file for data page 196 in storage area 1 for the MF_PERSONNEL database do not match the TSN
values actually stored in the backup file and displayed in the dump of the same page in the actual database.

$ RMU/BACKUP MF_PERSONNEL MFP.RBF
$ RMU/DUMP/BACKUP/OPTION=DEBUG/OUT=MFP.DMP MFP.RBF
$ TYPE MFP.DMP

REC_SIZE = 56 REC_TYPE = 7 BADDATA = 00
ROOT = 00 AREA_ID = 1 LAREA_ID = 2
PNO = 196 SPAM_VALUE = 208

Data page 196. header record of 56. bytes

 0001 000000C4 0000 page 196, physical area 1
 4253CAE0 0006 checksum = 4253CAE0
 00A66EB9 DFB18856 000A time stamp = 30−APR−2007 14:11:13.49
 0000 0076 0012 118 free bytes, 0 locked
 0004 0016 4 lines
 00D0 031E 0018 line 0: offset 031E, 208 bytes
 00D0 024E 001C line 1: offset 024E, 208 bytes
 00D0 017E 0020 line 2: offset 017E, 208 bytes
 00D0 00AE 0024 line 3: offset 00AE, 208 bytes

 00000020 0028 line 0: TSN 10737418272
 00000020 002C line 1: TSN 10737418272
 00000020 0030 line 2: TSN 10737418272
 00000020 0034 line 3: TSN 10737418272

REC_SIZE = 850 REC_TYPE = 8 BADDATA = 00
ROOT = 00 AREA_ID = 1 LAREA_ID = 2
PNO = 196

Data page 196. content record of 850. bytes

 FFFFFFFF 0008 snap page pointer −1
 00000020 000C snap pointer TSN 3752133449
 0002 0010 logical area 2
 00000000 0012 page sequence number 0
 0000 0016 page TSN base 0
 0000 0018 MBZ '..'

$ RMU/DUMP/AREA=1/START=196/END=196 MF_PERSONNEL

 0001 000000C4 0000 page 196, physical area 1
 4253CAE0 0006 checksum = 4253CAE0
 00A66EB9 DFB18856 000A time stamp = 30−APR−2007 14:11:13.49
 0000 0076 0012 118 free bytes, 0 locked
 0004 0016 4 lines
 00D0 031E 0018 line 0: offset 031E, 208 bytes
 00D0 024E 001C line 1: offset 024E, 208 bytes
 00D0 017E 0020 line 2: offset 017E, 208 bytes
 00D0 00AE 0024 line 3: offset 00AE, 208 bytes

 00000020 0028 line 0: TSN 32
 00000020 002C line 1: TSN 32
 00000020 0030 line 2: TSN 32
 00000020 0034 line 3: TSN 32

 FFFFFFFF 03EE snap page pointer −1
 00000020 03F2 snap pointer TSN 32
 0002 03F6 logical area 2

Oracle® Rdb for OpenVMS

2.3.8 Character Set Restriction on ORDER_BY_NAME Option Has Been Removed 51

 00000000 03F8 page sequence number 0
 0000 03FC page TSN base 0
 0000 03FE MBZ '..'

The following example shows that this problem has been fixed. Note that only data which directly
demonstrates that this problem has been fixed is shown in this example. The TSNs in the data page TSN line
index and the data page tail shown in the dump of the backup file for data page 196 in storage area 1 for the
MF_PERSONNEL database now match the TSN values actually stored in the backup file and displayed in the
dump of the same page in the actual database.

$ RMU/BACKUP MF_PERSONNEL MFP.RBF
$ RMU/DUMP/BACKUP/OPTION=DEBUG/OUT=MFP.DMP MFP.RBF
$ TYPE MFP.DMP

REC_SIZE = 56 REC_TYPE = 7 BADDATA = 00
ROOT = 00 AREA_ID = 1 LAREA_ID = 2
PNO = 196 SPAM_VALUE = 208

Data page 196. header record of 56. bytes

 0001 000000C4 0000 page 196, physical area 1
 4253CAE0 0006 checksum = 4253CAE0
 00A66EB9 DFB18856 000A time stamp = 30−APR−2007 14:11:13.49
 0000 0076 0012 118 free bytes, 0 locked
 0004 0016 4 lines
 00D0 031E 0018 line 0: offset 031E, 208 bytes
 00D0 024E 001C line 1: offset 024E, 208 bytes
 00D0 017E 0020 line 2: offset 017E, 208 bytes
 00D0 00AE 0024 line 3: offset 00AE, 208 bytes

 00000020 0028 line 0: TSN 32
 00000020 002C line 1: TSN 32
 00000020 0030 line 2: TSN 32
 00000020 0034 line 3: TSN 32

REC_SIZE = 850 REC_TYPE = 8 BADDATA = 00
ROOT = 00 AREA_ID = 1 LAREA_ID = 2
PNO = 196

Data page 196. content record of 850. bytes

 FFFFFFFF 0008 snap page pointer −1
 00000020 000C snap pointer TSN 32
 0002 0010 logical area 2
 00000000 0012 page sequence number 0
 0000 0016 page TSN base 0
 0000 0018 MBZ '..'

$ RMU/DUMP/AREA=1/START=196/END=196 MF_PERSONNEL

 0001 000000C4 0000 page 196, physical area 1
 4253CAE0 0006 checksum = 4253CAE0
 00A66EB9 DFB18856 000A time stamp = 30−APR−2007 14:11:13.49
 0000 0076 0012 118 free bytes, 0 locked
 0004 0016 4 lines
 00D0 031E 0018 line 0: offset 031E, 208 bytes
 00D0 024E 001C line 1: offset 024E, 208 bytes
 00D0 017E 0020 line 2: offset 017E, 208 bytes
 00D0 00AE 0024 line 3: offset 00AE, 208 bytes

 00000020 0028 line 0: TSN 32

Oracle® Rdb for OpenVMS

2.3.8 Character Set Restriction on ORDER_BY_NAME Option Has Been Removed 52

 00000020 002C line 1: TSN 32
 00000020 0030 line 2: TSN 32
 00000020 0034 line 3: TSN 32

 FFFFFFFF 03EE snap page pointer −1
 00000020 03F2 snap pointer TSN 32
 0002 03F6 logical area 2
 00000000 03F8 page sequence number 0
 0000 03FC page TSN base 0
 0000 03FE MBZ '..'

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.3.10 RMU/BACKUP/PARALLEL/DISK_FILE Problem
Expanding Directory Specifications

The RMU/BACKUP/PARALLEL/DISK_FILE command did not properly expand the backup file set
directory specifications. This caused a fatal error which aborted the parallel backup command execution if an
incomplete backup file directory specification was specified. This problem has now been fixed. To avoid this
problem, always specify complete backup file set directory specifications with the
RMU/BACKUP/PARALLEL/DISK_FILE command.

The following example shows the problem. The RMU/BACKUP/PARALLEL/DISK_FILE command
specifies the incomplete backup file set directories "[.G1]" and "[.G2]". These incomplete backup file set
directories are incorrectly expanded to an invalid directory specification. This causes a fatal error to be output
and the backup operation is aborted.

$ RMU/BACKUP/PARALLEL=(EXECUTOR_COUNT=2) −
 /EXTEND=64000/DISK_FILE=(WRITER_THREADS=2) −
 /PAGE_BUFFERS=5/ONLINE/QUIET_POINT −
 /LIST_PLAN=MFP.PLAN/NOLOG −
 MF_PERSONNEL.RDB −
 [.G1]MFP.RBF, −
 [.G2]
%RMU−F−FILACCERR, error opening output file DEVICE:[INVALID_DIR.G1]MFP.RBF;
−RMS−E−DNF, directory not found
−SYSTEM−W−NOSUCHFILE, no such file
%RMU−F−FATALERR, fatal error on BACKUP
%RMU−F−FTL_RMU, Fatal error for RMU operation at 9−APR−2013 11:03:54.63
$

The following example shows that this problem has been fixed. The
RMU/BACKUP/PARALLEL/DISK_FILE command specifies the incomplete backup file set directories
"[.G1]" and "[.G2]". These incomplete backup file set directories are expanded correctly and now the backup
operation completes successfully.

$ RMU/BACKUP/PARALLEL=(EXECUTOR_COUNT=2) −
 /EXTEND=64000/DISK_FILE=(WRITER_THREADS=2) −
 /PAGE_BUFFERS=5/ONLINE/QUIET_POINT −
 /LIST_PLAN=MFP.PLAN/NOLOG −
 MF_PERSONNEL.RDB −
 [.G1]MFP.RBF, −
 [.G2]
$

Oracle® Rdb for OpenVMS

2.3.10 RMU/BACKUP/PARALLEL/DISK_FILE Problem Expanding Directory Specifications 53

The following example shows the workaround to use for this problem. If complete backup file set directory
specifications are used, the backup operation completes successfully.

$ RMU/BACKUP/PARALLEL=(EXECUTOR_COUNT=2) −
 /EXTEND=64000/DISK_FILE=(WRITER_THREADS=2) −
 /PAGE_BUFFERS=5/ONLINE/QUIET_POINT −
 /LIST_PLAN=MFP.PLAN/NOLOG −
 MF_PERSONNEL.RDB −
 DEVICE:[DIRECTORY.G1]MFP.RBF, −
 DEVICE:[DIRECTORY.G2]
$

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.3.11 The RMU/BACKUP/PLAN/LIST_PLAN Command
Created an Invalid Backup Plan File

The Oracle Rdb RMU/BACKUP/PLAN command /LIST_PLAN qualifier creates a new backup plan file,
based on the RMU/BACKUP/PLAN command parameter which is an existing backup plan file specification,
but with place holder comments added for new or existing backup command qualifiers which are not in the
original backup plan file.

There was a problem which caused a new invalid backup plan file to be created by the
RMU/BACKUP/PLAN/LIST_PLAN command which left out some of the information contained in the
original valid plan file. When executed to backup the database, the new invalid backup plan file would cause
the database backup to fail.

This problem has now been fixed and a valid new plan file is created by the /LIST_PLAN qualifier when used
with the RMU/BACKUP/PLAN command. Note that this problem did not happen with the /LIST_PLAN
qualifier used with the RMU/BACKUP/PARALLEL command.

The following example shows the problem. The RMU/BACKUP/PARALLEL command does not execute the
database backup but uses the /LIST_PLAN qualifier to create the valid backup plan file MFP.PLAN. The first
RMU/BACKUP/PLAN command also does not execute the database backup but creates a new but invalid
backup plan file based on the valid backup plan file. The VMS DIFF command shows that information that
was in the original valid plan file is missing in the new invalid plan file. When the invalid new plan file is then
executed using the RMU/BACKUP/PLAN command, the backup fails because of the missing data in the new
invalid backup plan file. In fact, the missing data causes the original MULTIFILE backup plan to now be an
invalid TAPE backup plan.

$ RMU/BACKUP/PARALLEL=(EXECUTOR=2)/NOEXECUTE −
_$ /EXTEND=64000/DISK_FILE=(WRITER_THREADS=2) −
_$ /PAGE_BUFFERS=5/ONLINE/QUIET_POINT −
_$ /LIST_PLAN=MFP.PLAN/LOG −
_$ DEVICE:[DIRECTORY]MF_PERSONNEL.RDB −
_$ DEVICE:[DIRECTORY.B1]MFP.RBF, −
_$ DEVICE:[DIRECTORY.B2]
$ RMU/BACKUP/PLAN/NOEXECUTE/LIST_PLAN=MFP_NEW.PLAN MFP.PLAN
$ DIFF MFP.PLAN MFP_NEW.PLAN

File DEVICE:[DIRECTORY]MFP.PLAN;28
 10 Style = Multifile
 11 FixedDisks
 12 ! Max_file_size = megabytes per backup file

Oracle® Rdb for OpenVMS

2.3.11 The RMU/BACKUP/PLAN/LIST_PLAN Command Created an Invalid Backup Plan File 54

 13 PromptAutomatic

File DEVICE:[DIRECTORY]MFP_NEW.PLAN;1
 10 Style = Normal
 11 PromptAutomatic

File DEVICE:[DIRECTORY]MFP.PLAN;28
 26 Page_Buffers = 5
 27 ! Allocation_Quantity = number of blocks for initial backup file
 allocation

File DEVICE:[DIRECTORY]MFP_NEW.PLAN;1
 24 ! Page_Buffers = number of buffers to use for each storage area
 25 ! Allocation_Quantity = number of blocks for initial backup file
 allocation

File DEVICE:[DIRECTORY]MFP.PLAN;28
 31 NoIncremental
 32 ! Accept_labels preserves all tape labels

File DEVICE:[DIRECTORY]MFP_NEW.PLAN;1
 29 Incremental
 30 ! Accept_labels preserves all tape labels

File DEVICE:[DIRECTORY]MFP.PLAN;28
 40 Encrypt = (Name="MAGTAPE_KEY",Algorithm="DESCBC")
 41 NoRewind

File DEVICE:[DIRECTORY]MFP_NEW.PLAN;1
 38 NoRewind

File DEVICE:[DIRECTORY]MFP.PLAN;28
 64 Writer_threads = 1
 65 Directory List
 66 DEVICE:[DIRECTORY.B1]
 67 End Directory List
 68 End Executor Parameters

File DEVICE:[DIRECTORY]MFP_NEW.PLAN;1
 61 Tape Drive List
 62 End Tape Drive List
 63 End Executor Parameters

File DEVICE:[DIRECTORY]MFP.PLAN;28
 80 Writer_threads = 1
 81 Directory List
 82 DEVICE:[DIRECTORY.B2]
 83 End Directory List
 84 End Executor Parameters

File DEVICE:[DIRECTORY]MFP_NEW.PLAN;1
 75 Tape Drive List
 76 End Tape Drive List
 77 End Executor Parameters

Number of difference sections found: 6
Number of difference records found: 14

Oracle® Rdb for OpenVMS

2.3.11 The RMU/BACKUP/PLAN/LIST_PLAN Command Created an Invalid Backup Plan File 55

DIFFERENCES /MERGED=1−
 DEVICE:[DIRECTORY]MFP.PLAN;28−
 DEVICE:[DIRECTORY]MFP_NEW.PLAN;1

$ RMU/BACKUP/PLAN MFP_NEW.PLAN
%RMU−E−PLNSLVTD, Executor WORKER_001 has no tape drives assigned.
%RMU−E−PLNSLVTD, Executor WORKER_002 has no tape drives assigned.
WORKER_001: %RMU−F−FTL_RMU, Fatal error for RMU operation at 3−MAY−2013
11:37:21.93
WORKER_002: %RMU−F−FTL_RMU, Fatal error for RMU operation at 3−MAY−2013
11:37:21.93

The following example shows that this problem has been fixed. Now the first RMU/BACKUP/PLAN
command does not execute the backup but creates the valid new database backup plan file MFP_NEW.PLAN
based on the original valid MFP.PLAN database backup plan file. The VMS DIFF command shows no
differences between the two plan files. When the second RMU/BACKUP/PLAN command executes the new
valid MFP_NEW.PLAN file, the database backup succeeds.

MALIBU>RMU/BACKUP/PLAN/NOEXECUTE/LIST_PLAN=MFP_NEW.PLAN MFP.PLAN
MALIBU>DIFF MFP.PLAN MFP_NEW.PLAN
Number of difference sections found: 0
Number of difference records found: 0

DIFFERENCES /MERGED=1−
 DEVICE:[DIRECTORY]MFP.PLAN;1−
 DEVICE:[DIRECTORY]MFP_NEW.PLAN;1
MALIBU>RMU/BACKUP/PLAN MFP_NEW.PLAN
%RMU−I−QUIETPT, waiting for database quiet point at 3−MAY−2013 11:44:40.52
%RMU−I−RELQUIETPT, Database quiet point lock has been released at 3−MAY−2013
11:44:40.56.
WORKER_001: %RMU−I−QUIETPT, waiting for database quiet point at 3−MAY−2013
11:44:40.60
WORKER_002: %RMU−I−QUIETPT, waiting for database quiet point at 3−MAY−2013
11:44:40.60
WORKER_001: %RMU−I−RELQUIETPT, Database quiet point lock has been released at
3−MAY−2013 11:44:40.60.
WORKER_002: %RMU−I−RELQUIETPT, Database quiet point lock has been released at
3−MAY−2013 11:44:40.61.
WORKER_001: %RMU−I−BCKTXT_00, Backed up root file
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
WORKER_002: %RMU−I−RESUME, resuming operation on volume 2 using _1DGA220
WORKER_001: %RMU−I−BCKTXT_02, Starting full backup of storage area (RDB$SYSTEM)
DEVICE:[DIRECTORY]MF_PERS_DEFAULT.RDA;1 at 3−MAY−2013 11:44:40.80
WORKER_001: %RMU−I−BCKTXT_12, Completed full backup of storage area
(RDB$SYSTEM)
DEVICE:[DIRECTORY]MF_PERS_DEFAULT.RDA;1 at 3−MAY−2013 11:44:40.88
WORKER_002: %RMU−I−BCKTXT_02, Starting full backup of storage area
(SALARY_HISTORY)
DEVICE:[DIRECTORY]SALARY_HISTORY.RDA;1 at 3−MAY−2013 11:44:40.81

WORKER_001: %RMU−I−BCKTXT_12, Completed full backup of storage area
(EMPIDS_OVER)
DEVICE:[DIRECTORY]EMPIDS_OVER.RDA;1 at3−MAY−2013 11:44:40.99
WORKER_001: %RMU−I−BCKTXT_12, Completed full backup of storage area
(EMPIDS_LOW)
DEVICE:[DIRECTORY]EMPIDS_LOW.RDA;1 at 3−MAY−2013 11:44:40.99
WORKER_001: %RMU−I−BCKTXT_12, Completed full backup of storage area
(MF_PERS_SEGSTR)
DEVICE:[DIRECTORY]MF_PERS_SEGSTR.RDA;1 at 3−MAY−2013 11:44:40.99
WORKER_002: %RMU−I−COMPLETED, BACKUP operation completed at 3−MAY−2013

Oracle® Rdb for OpenVMS

2.3.11 The RMU/BACKUP/PLAN/LIST_PLAN Command Created an Invalid Backup Plan File 56

11:44:41.00
WORKER_001: %RMU−I−COMPLETED, BACKUP operation completed at 3−MAY−2013
11:44:41.00
%RMU−I−COMPLETED, BACKUP operation completed at 3−MAY−2013 11:44:41.00

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.3.12 Script Generated by RMU Extract Has Syntax Error in
ALERT OPERATOR Clause

Bug 16875931

In prior releases of Oracle Rdb, the RMU/EXTRACT command might generate invalid syntax for the ALERT
OPERATOR clause of the NOTIFY IS ENABLED clause.

The following example uses the SQL script created by RMU Extract which results in a syntax error.

$ RMU/EXTRACT−
 /ITEM=IMPORT−
 /DEFAULTS=(NOALLOCATION,NOSNAPSHOT_ALLOCATION)−
 /OPTION=(NOHEADER,FILENAME_ONLY)−
 /OUTPUT=AFTER.SQL−
 TEST_DB
$
$ DEFINE/USER rmuextract_rbr TEST_DB_EXP
$ SQL$

drop database
 filename TEST_DB
;

@after.sql;
SQL> set verify;
SQL> set language ENGLISH;
SQL> set default date format 'SQL92';
SQL> set quoting rules 'SQL92';
SQL> set date format DATE 001, TIME 001;
SQL> import database from rmuextract_rbr
cont> filename 'TEST_DB'
.
.
.
cont> prestarted transactions are ON
cont> notify is ENABLED
cont> (alert operator central + console + disk + cluster
cont> + security + oper1 + oper2 + oper3 + oper4 + oper5 + oper6
cont> + oper7 + oper8 + oper9 + oper10 + oper11 + oper12 + tape)
 + oper7 + oper8 + oper9 + oper10 + oper11 + oper12 + tape)
 ^
%SQL−W−LOOK_FOR_STT, Syntax error, looking for:
%SQL−W−LOOK_FOR_CON, NO, ALL, NONE, DISKS, OPER1, OPER2,
%SQL−W−LOOK_FOR_CON, OPER3, OPER4, OPER5, OPER6, OPER7,
%SQL−W−LOOK_FOR_CON, OPER8, OPER9, OPER10, OPER11, OPER12,
%SQL−W−LOOK_FOR_CON, CENTRAL, CLUSTER, CONSOLE, SECURITY,
%SQL−F−LOOK_FOR_FIN, found TAPE instead
.
.
.

Oracle® Rdb for OpenVMS

2.3.12 Script Generated by RMU Extract Has Syntax Error in ALERT OPERATOR Clause 57

This problem results from using the command RMU/SET AFTER_JOURNAL/NOTIFY=ALL. RMU sets all
the possible operator notify flags supported by OpenVMS, even those not currently supported by Oracle Rdb.
RMU/EXTRACT using either /ITEM=DATABASE or /ITEM=IMPORT erroneously emits the TAPE
keyword.

Apart from editing the generated scripts from RMU Extract, another solution is to clear those unused operator
notify flags.

$ RMU/SET AFTER/NONOTIFY TEST_DB

Then replace them with the subset supported by Rdb.

$ RMU/SET AFTER/NOTIFY=(−
 CENTRAL,CONSOLE,DISK,CLUSTER,SECURITY,OPER1−
 ,OPER2,OPER3,OPER4,OPER5,OPER6,OPER7,OPER8,OPER9−
 ,OPER10,OPER11,OPER12) −
 TEST_DB
$

This problem has been corrected in Oracle Rdb Release 7.2.5.3. RMU/EXTRACT using either
/ITEM=DATABASE or /ITEM=IMPORT qualifiers will now only generate legal syntax for the ALERT
OPERATOR clause. In addition, RMU Extract will abbreviate the list of operator notify flags to ALL instead
of listing all possible flags.

2.3.13 RMU/LOAD Sometimes Stores Records In Overflow
Partition

Bug 16315422

When using RMU/LOAD to load large data records (larger than 16k bytes), some rows may have been loaded
into the wrong partition. This occurred because Rdb erroneously interpreted the partitioning column as NULL.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

Oracle® Rdb for OpenVMS

2.3.13 RMU/LOAD Sometimes Stores Records In Overflow Partition 58

2.4 RMU Show Statistics Errors Fixed

2.4.1 RMU/SHOW STATISTICS (TRANSACTION DURATION
(TOTAL)) Playback Generates a Bugcheck

Bug 14549269

In prior versions of Oracle Rdb, the RMU Show Statistics (Transaction Duration (Total)) screen on Integrity
systems generates a bugcheck with an arithmetic trap.

%SYSTEM−F−INTDIV, arithmetic trap, integer divide by zero at
PC=FFFFFFFF80A91E51, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file DISK1:[TESTING]RMUBUGCHK.DMP;
%RMU−F−FTL_SHOW, Fatal error for SHOW operation at 24−AUG−2012 06:29:45.45

This problem has been corrected in Oracle Rdb Release 7.2.5.3. RMU Show Statistics no longer generates a
fatal error for this screen.

2.4.2 %SMG−F−INVROW in RMU/SHOW STAT Using Option
WRITE REPORT GRAPH or WRITE BOTH

Bug 14807019

When using RMU/SHOW STATISTICS on a database (e.g. MF_PERSONNEL) and doing M (Menu), then a
letter that gives a screen in which you can choose O (Option) to write a Report with Graphs or Numbers or
Both, and you choose A (graph) or C (Both), the report is written partially and then RMU/SHOW
STATISTICS crashes with the following error message:

 %SMG−F−INVROW, invalid row
 %RMU−F−FATALOSI, Fatal error from the Operating System Interface.
 %RMU−F−FTL_SHOW, Fatal error for SHOW operation <<DATE & TIME >>

This problem has been corrected in Oracle Rdb Release 7.2.5.3. RMU Show Statistics no longer generates an
invalid row fatal error for this screen.

2.4.3 Unable to Start RMU/SHOW STATISTICS During
Cluster State Transition

Bug 14582053

In prior versions of Oracle Rdb, an attempt to run RMU/SHOW STATISTICS during a cluster state transition
would cause the process to hang until the transition was complete.

Under normal circumstances, if an Rdb database, opened on multiple cluster members, was abnormally closed
on one node with active users, a Database Recovery process (DBR) would be initiated on another node to
recover those failed users. The abnormal closure could be caused by a number of situations including: node

2.4 RMU Show Statistics Errors Fixed 59

failure, Rdb monitor failure, or an RMU/CLOSE/ABORT=DELPRC command.

During this recovery period, all database processes are frozen and new attaches (including RMU/SHOW
STATISTICS) are stalled. When the recovery completes, the database has normalized and activity can
continue on the remaining available nodes (cluster state transition).

In very rare circumstances, it may be possible for the DBR process to become stalled, typically on an
undetected deadlock. If the RMU SHOW/STATISTICS utility had been able to start, the "Stall Messages" and
"DBR Activity" screens could help determine the nature of the stall, and the Tools facility could be used to
terminate the processes blocking the DBR.

This problem has now been corrected in Oracle Rdb Release 7.2.5.3. RMU/SHOW STATISTICS is no longer
subject to the freeze protocol and thus can start and collect information even when there is a stalled recovery
process.

2.4.4 Unexpected Bugcheck Dump From RMU/SHOW
STATISTICS/HOT_STANDBY_LOG

Bug 15883785

In prior versions of Oracle Rdb, the RMU Show Statistics command with /Hot_Standby_Log qualifier might
generate an access violation (ACCVIO) and produce a bugcheck dump. The bugcheck summary would be
similar to this example:

Itanium OpenVMS 8.4•
Oracle Rdb Server 7.2.5.2.0•
Got a RMUBUGCHK.DMP•
SYSTEM−F−ACCVIO, access violation, virtual address=0000000050435400•
Exception occurred at symbol not found•
Called from RMU72\KUTDIS$HS_NOTIFY + 00000840•
Called from RMU72\KUTDIS$EVENT_NOTIFY + 00000220•
Called from RMU72\KUTDIS$DISPLAY_ASTX + 00000D00•
Running image RMU72.EXE•
Command line was: RMU/SHOW STATI/TIME=5/NOINTERACTIVE−•
/UNTIL=14−NOV−2012 16:59:35.42/HOT_STANDBY=SYS$LOGIN:GET_HS.LOG
TEST_DATABASE

•

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

2.4.5 Problem Viewing RMU/SHOW STATISTICS 'LOGMINER
INFORMATION' Screen

Bug 16732816

A problem was introduced in Oracle Rdb Release 7.2.5.2 that caused RMU/SHOW STATISTICS to display
invalid data in the "MQP_TSN" and "LastTSN" fields on the "LOGMINER INFORMATION" screen.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

Oracle® Rdb for OpenVMS

2.4.4 Unexpected Bugcheck Dump From RMU/SHOW STATISTICS/HOT_STANDBY_LOG 60

Oracle® Rdb for OpenVMS

2.4.4 Unexpected Bugcheck Dump From RMU/SHOW STATISTICS/HOT_STANDBY_LOG 61

Chapter 3
Software Errors Fixed in Oracle Rdb Release
7.2.5.2
This chapter describes software errors that are fixed by Oracle Rdb Release 7.2.5.2.

Chapter 3Software Errors Fixed in Oracle Rdb Release 7.2.5.2 62

3.1 Software Errors Fixed That Apply to All
Interfaces

3.1.1 Orphan LIST Segments on Integrity Systems

In prior releases of Oracle Rdb V7.2 for Integrity systems, deleting of LIST OF BYTE VARYING column
data was not performed when assigning a NULL value to the column. See the following example.

SQL> update RESUMES
cont> set resume = NULL
cont> where last_name = 'Smith';
1 row updated
SQL>

This statement correctly sets the column to NULL but the old LIST OF BYTE VARYING data is not
correctly deleted. This problem includes actions by the DROP TABLE and ALTER TABLE ... DROP
COLUMN statements which use this technique to erase the LIST segments prior to updating the metadata in
the system tables.

The result of this error is that orphan LIST segments remain in the database and cannot be removed except by
a database unload or reload.

Note that this problem does not exist on Alpha versions of Oracle Rdb. A normal DELETE of a row does not
exhibit this problem.

Symptoms of this problem include:

An unexpected SSAREANOTEMPT error may be observed when trying to drop a LIST OF BYTE
VARYING column as shown in this example.

SQL> set flags 'stomap_stats';
SQL> alter table resumes
cont> drop column resume cascade;
~As: Retrieve all column "RESUME" pointers from table "RESUMES"
~As: list partition RESUME_LISTS (1) is now empty
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−SSAREANOTEMPTY, segmented string area RESUME_LISTS is not empty, it
may not be deleted

•

An unexpected SSAREANOTEMPT error may be observed when trying to drop the table as shown in
this example.

SQL> set flags 'stomap_stats';
SQL> drop table COMMENTS cascade;
~As: list partition BLOBS (1) is now empty
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−SSAREANOTEMPTY, segmented string area BLOBS is not empty, it may not be
deleted

In some cases, this problem may be avoided by performing a DELETE prior to the DROP TABLE.
However, if some orphan LIST segments exist for this table's logical areas then the DROP TABLE

•

3.1 Software Errors Fixed That Apply to All Interfaces 63

may still fail.

SQL> set flags 'stomap_stats';
SQL> delete from COMMENTS;
4 rows deleted
SQL> drop table COMMENTS cascade;
~As: list partition BLOBS (1) is now empty
~As: list partition IMAGES (2) is now empty

Unexpected storage extension when deleting LIST OF BYTE VARYING column data by assigning a
NULL value and subsequent INSERT in the same transaction.
In this case, Rdb should be reusing the deleted LIST segments rather than extending the storage area.

•

This problem has been corrected in Oracle Rdb Release 7.2.5.2. The query code generated for assigning
NULL to a LIST OF BYTE VARYING column now correctly erases the LIST column data.

3.1.2 Query With LIKE Clause Executes the Conjunct Twice

Bug 13813658

Some LIKE clauses with no prefix get incorrectly displayed as "Keys" in the index only retrieval node, as in
the following example.

create index emp_last_desc on employees (last_name desc);
select last_name from employees where last_name like '%Z%';
Tables:
 0 = EMPLOYEES
Conjunct: 0.LAST_NAME LIKE '%Z%' <= execute twice here???
Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_LAST_DESC [0:0]
 Keys: 0.LAST_NAME LIKE '%Z%' <= execute once here
 LAST_NAME
 Ziemke
1 row selected

Since LIKE contains no prefix, it should not appear in the list of "Keys:" for index−only retrieval.

If the wildcard is removed, LIKE now contains the prefix "Z", and the conjunct should appear in the list of
"Keys:" for index−only retrieval, but transformed to "STARTING WITH", as in the following example.

select last_name from employees where last_name like 'Z%';
Tables:
 0 = EMPLOYEES
Conjunct: 0.LAST_NAME STARTING WITH 'Z'
Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_LAST_DESC [1:1]
 Keys: 0.LAST_NAME STARTING WITH 'Z'
 LAST_NAME
 Ziemke
1 row selected

The problem occurs when the LIKE clause with no prefix is applied as index−only retrieval.

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

Oracle® Rdb for OpenVMS

3.1.2 Query With LIKE Clause Executes the Conjunct Twice 64

3.1.3 Query With Zigzag Match Strategy Returns Wrong
Result

Bug 13717173

The following customer's query, using zigzag match strategy, returns the wrong result (0 rows instead of 3
rows).

SELECT
 T3.COL1,
 T1.ADATE,
 T2.COL2,
 T2.COL3
FROM T3, T1, T2
WHERE
 T1.COL1 = T3.COL1
 AND T1.ADATE >= 20120201
 AND T2.COL1 = T1.COL1
 AND T2.COL2 = T1.COL2
 and T1.COL2 = 123688
 AND T2.COL3 = T1.COL3;
~S: Outline "QO_BUG_MATCH_OL" used
Tables:
 0 = T3
 1 = T1
 2 = T2
Cross block of 2 entries Q1
 Cross block entry 1
 Conjunct: 2.COL1 = 1.COL1
 Conjunct: 2.COL2 = 1.COL2
 Conjunct: 2.COL3 = 1.COL3
 Match Q1
 Outer loop (zig−zag)
 Match_Keys:1.COL2, 1.COL1, 1.COL3
 Index_Keys:COL2, COL1, COL3
 Conjunct: 1.ADATE >= 20120201
 Conjunct: 1.COL2 = 123688
 Get Retrieval by index of relation 1:T1
 Index name T1_NDX_COL213 [0:0]
 Bool: 1.COL2 = 123688
 Inner loop (zig−zag)
 Match_Keys:2.COL1, 2.COL2, 2.COL3
 Index_Keys:COL1, COL2, COL3, DATUM, OTHER_DATUM
 Conjunct: 2.COL2 = 123688
 Index only retrieval of relation 2:T2
 Index name T2_NDX_COL123 [0:0]
 Cross block entry 2
 Index only retrieval of relation 0:T3
 Index name T3_NDX [1:1] Direct lookup
 Keys: 1.COL1 = 0.COL1
0 rows selected

The query works if the index T1_NDX_COL213 is dropped and the following index is added:

show index T1_NDX_COL123;
Indexes on table T1:
T1_NDX_COL123 with column A_SYSID_ACC_ANALYT
 and column A_SYSID_DOC

Oracle® Rdb for OpenVMS

3.1.3 Query With Zigzag Match Strategy Returns Wrong Result 65

 and column A_SYSID_SYMBOL
 No Duplicates allowed
 Type is Sorted
 ...etc...
[... now execute the same query above ...]

~S: Outline "QO_MATCH_GOOD_OL" used
Tables:
 0 = T3
 1 = T1
 2 = T2
Cross block of 2 entries Q1
 Cross block entry 1
 Conjunct: 2.COL1 = 1.COL1
 Conjunct: 2.COL2 = 1.COL2
 Conjunct: 2.COL3 = 1.COL3
 Match Q1
 Outer loop (zig−zag)
 Match_Keys:1.COL1, 1.COL2, 1.COL3
 Index_Keys:COL1, COL2, COL3
 Conjunct: 1.ADATE >= 20120201
 Conjunct: 1.COL2 = 123688
 Get Retrieval by index of relation 1:T1
 Index name T1_NDX_COL123 [0:0] <= new index added
 Bool: 1.COL2 = 123688
 Inner loop (zig−zag)
 Match_Keys:2.COL1, 2.COL2, 2.COL3
 Index_Keys:COL1, COL2, COL3, DATUM, OTHER_DATUM
 Conjunct: 2.COL2 = 123688
 Index only retrieval of relation 2:T2
 Index name T2_NDX_COL123 [0:0]
 Cross block entry 2
 Index only retrieval of relation 0:T3
 Index name T3_NDX [1:1] Direct lookup
 Keys: 1.COL1 = 0.COL1
 T3.COL1 T1.ADATE T2.COL2 T2.COL3
 3426505 20120201 123688 607
 539541268 20120201 123688 606
 1611771726 20120201 123688 607
3 rows selected

The problem occurs when the query, in a zig−zag strategy, applies an outer index with different order of
segments from the inner index, as in the following index.

 Outer loop (zig−zag)
 Match_Keys:1.COL2, 1.COL1, 1.COL3
 Index_Keys:COL2, COL1, COL3 <= See Note
 Get Retrieval by index of relation 1:T1
 Index name T1_NDX_COL213 [0:0]

 ...etc...

 Inner loop (zig−zag)
 Match_Keys:2.COL1, 2.COL2, 2.COL3
 Index_Keys:COL1, COL2, COL3, DATUM, OTHER_DATUM <= See Note
 Index only retrieval of relation 2:T2
 Index name T2_NDX_COL123 [0:0]

Note: The order of outer loop Index_Keys: "COL2, COL1, COL3" as compared to that of the inner loop
Index_Keys:"COL1, COL2, COL3".

Oracle® Rdb for OpenVMS

3.1.3 Query With Zigzag Match Strategy Returns Wrong Result 66

The Match_Keys for the Inner loop (zig−zag) is misleading here, indicating that all three keys are matched. In
reality, the second segment "2.COL2" is the only key that is matched against the outer Match_Keys, since it is
the leading segment of the outer Index_Keys.

Obviously, there is also a problem in the dumper output for zig−zag strategy where the Match_Keys are
displayed incorrectly. The correct display should be as follows:

 Outer loop (zig−zag)
 Match_Keys:1.COL2, 1.COL1, 1.COL3
 Index_Keys:COL2, COL1, COL3
 Get Retrieval by index of relation 1:T1
 Index name T1_NDX_COL213 [0:0]

 ...etc...

 Inner loop (zig−zag)
 Match_Keys:2.COL2 <== See Note
 Index_Keys:COL1, COL2, COL3, DATUM, OTHER_DATUM
 Index only retrieval of relation 2:T2
 Index name T2_NDX_COL123 [0:0]

Note: "2.COL2" is the only Match_Key that should be displayed in the Inner Loop (zig−zag) block.

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.1.4 Zig−zag Query With Mapping Values Index Returns
Wrong Result

Bug 9922531

In prior releases of Oracle Rdb, it was possible to get wrong results when the zig−zag match strategy was
selected. This is shown by the following query.

SQL> select t2.f4
cont> from t1 join t2
cont> on t2.f1 = t1.f1 and t2.f2 = t1.f2 and t2.f3 = t1.f3
cont> where
cont> t1.f4 = 'xyz' and
cont> t1.f2 in (1,3,5)
cont> optimize using OL_MATCH;
~S: Outline "OL_MATCH" used
Tables:
 0 = T1
 1 = T2
Conjunct: (1.F1 = 0.F1) AND (1.F2 = 0.F2) AND (1.F3 = 0.F3)
Match Q1
 Outer loop (zig−zag)
 Match_Keys:1.F1, 1.F2, 1.F3
 Index_Keys:F1, F2, F3
 Conjunct: (1.F2 = 1) OR (1.F2 = 3) OR (1.F2 = 5)
 Get Retrieval by index of relation 1:T2
 Index name I2 [0:0]
 Bool: (1.F2 = 1) OR (1.F2 = 3) OR (1.F2 = 5)
 Inner loop (zig−zag)
 Match_Keys:0.F1, 0.F2, 0.F3
 Index_Keys:F1, F2, F3, F4

Oracle® Rdb for OpenVMS

3.1.4 Zig−zag Query With Mapping Values Index Returns Wrong Result 67

 Conjunct: 0.F4 = 'xyz'
 Conjunct: (0.F2 = 1) OR (0.F2 = 3) OR (0.F2 = 5)
 Index only retrieval of relation 0:T1
 Index name I1 [0:0]
 Bool: (0.F4 = 'xyz') AND ((0.F2 = 1) OR (0.F2 = 3) OR (0.F2 = 5))
 T2.F4
 xyz
1 row selected

However the query works if the cross strategy is used, as in the following example.

SQL> select t2.f4
cont> from t1 join t2
cont> on t2.f1 = t1.f1 and t2.f2 = t1.f2 and t2.f3 = t1.f3
cont> where
cont> t1.f4 = 'xyz' and
cont> t1.f2 in (1,3,5)
cont> optimize using OL_CROSS;
~S: Outline "OL_CROSS" used
Tables:
 0 = T1
 1 = T2
Cross block of 2 entries Q1
 Cross block entry 1
 Leaf#01 FFirst 1:T2 Card=8
 Bool: (1.F2 = 1) OR (1.F2 = 3) OR (1.F2 = 5)
 BgrNdx1 I2 [0:0] Fan=11
 Bool: (1.F2 = 1) OR (1.F2 = 3) OR (1.F2 = 5)
 Cross block entry 2
 Conjunct: (0.F2 = 1) OR (0.F2 = 3) OR (0.F2 = 5)
 Index only retrieval of relation 0:T1
 Index name I1 [4:4]
 Keys: (1.F1 = 0.F1) AND (1.F2 = 0.F2) AND (1.F3 = 0.F3) AND (0.F4 =
 'xyz')
 T2.F4
 xyz
 xyz
2 rows selected

The query works if the zig−zag is disabled at the outer loop, as in the following example.

SQL> set flags 'nozigzag_outer';
SQL>
SQL> select t2.f4
cont> from
cont> t1 join t2
cont> on t2.f1 = t1.f1 and t2.f2 = t1.f2 and t2.f3 = t1.f3
cont> where
cont> t1.f4 = 'xyz' and
cont> t1.f2 in (1,3,5)
cont> optimize using OL_MATCH;
~S: Outline "OL_MATCH" used
Tables:
 0 = T1
 1 = T2
Conjunct: (1.F1 = 0.F1) AND (1.F2 = 0.F2) AND (1.F3 = 0.F3)
Match Q1
 Outer loop
 Match_Keys:1.F1, 1.F2, 1.F3
 Conjunct: (1.F2 = 1) OR (1.F2 = 3) OR (1.F2 = 5)
 Get Retrieval by index of relation 1:T2

Oracle® Rdb for OpenVMS

3.1.4 Zig−zag Query With Mapping Values Index Returns Wrong Result 68

 Index name I2 [0:0]
 Bool: (1.F2 = 1) OR (1.F2 = 3) OR (1.F2 = 5)
 Inner loop (zig−zag)
 Match_Keys:0.F1, 0.F2, 0.F3
 Index_Keys:F1, F2, F3, F4
 Conjunct: 0.F4 = 'xyz'
 Conjunct: (0.F2 = 1) OR (0.F2 = 3) OR (0.F2 = 5)
 Index only retrieval of relation 0:T1
 Index name I1 [0:0]
 Bool: (0.F4 = 'xyz') AND ((0.F2 = 1) OR (0.F2 = 3) OR (0.F2 = 5))
 T2.F4
 xyz
 xyz
2 rows selected

The query also works if the mapped values in the index I1 are removed.

SQL> show index I1;
Indexes on table T1:
I1 with column F1
 and column F2
 mapping values 0 to 32767
 and column F3
 mapping values 0 to 32767
 and column F4
 Duplicates are allowed
 Type is Sorted Ranked
 Duplicates are Compressed Bitmaps
 Key suffix compression is DISABLED
 Node size 430

SQL> drop index I1;
SQL> create index I1
cont> on T1
cont> (f1
cont> ,f2
cont> ,f3
cont> ,f4)
cont> type is SORTED RANKED;

The problem occurs when the query, in a zig−zag strategy, uses an index defined with MAPPING VALUES.

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.1.5 Query Bugchecks With MAX, MIN or COUNT

Bug 5245269

When the dialect is set to enable NULL elimination warnings, the select query with either MAX, MIN or
COUNT using partitioned index may bugcheck.

The following is the reproducer for the above problem:

$ SQL$
SQL> attach 'filename PERSONNEL2';
SQL> set flags 'strategy,detail(2)';

SQL> create index MI_INDEX

Oracle® Rdb for OpenVMS

3.1.5 Query Bugchecks With MAX, MIN or COUNT 69

cont> on EMPLOYEES (MIDDLE_INITIAL)
cont> type is SORTED RANKED
cont> store using (MIDDLE_INITIAL)
cont> in AREA_20 with limit of ('F')
cont> in AREA_21 with limit of ('Z')
cont> otherwise in AREA_22
cont> ;
SQL>
SQL> select max(middle_initial) from employees;
Tables:
 0 = EMPLOYEES
Aggregate: 0:MAX (0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [0:0] Max key lookup
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USD04:[ONG]RDSBUGCHK.DMP;

The query works without the partitioned index defined, as in the following example.

SQL> drop index MI_INDEX;
SQL> select max(middle_initial) from employees;
Tables:
 0 = EMPLOYEES
Aggregate: 0:MAX (0.MIDDLE_INITIAL) Q2
Get Retrieval sequentially of relation 0:EMPLOYEES

 Z
1 row selected
%RDB−I−ELIM_NULL, null value eliminated in set function

The key parts of this query which contributed to the situation leading to the error are these:

The SQL dialect is set to SQL92, SQL99, ORACLE LEVEL1, or ORACLE LEVEL2.1.
The index is partitioned.2.
The function is either MAX (where the "Max key lookup" strategy is employed), MIN (where the
"Min key lookup" strategy is employed) or COUNT (where the "Index counts lookup" or "Index
distinct lookup" strategy is employed).

3.

This problem has been corrected in Oracle Rdb Release 7.2.5.2. These strategies ("Max key lookup", "Min
key lookup", "Index counts lookup", "Index distinct lookup") do not return the correct warning for null
elimination. These strategies are disabled in this release when null semantics are required.

3.1.6 Query Bugchecks When the Index is Partitioned With
Descending Segment

Bug 14231913

The following is the reproducer for the above problem:

$ SQL$
create database
 filename PERSONNEL2

 create storage area AREA_20
 page format is UNIFORM
 create storage area AREA_21
 page format is UNIFORM

Oracle® Rdb for OpenVMS

3.1.6 Query Bugchecks When the Index is Partitioned With Descending Segment 70

 create storage area AREA_22
 page format is UNIFORM
;

create table EMPLOYEES (
 MIDDLE_INITIAL
 CHAR (1)
);
create storage map EMPLOYEES_MAP
 for EMPLOYEES
 store in AREA_21 ;

create index MI_INDEX
 on EMPLOYEES (MIDDLE_INITIAL desc)
 type is SORTED RANKED
 store using (MIDDLE_INITIAL)
 in AREA_21 with limit of ('Z')
 in AREA_20 with limit of ('F')
 otherwise in AREA_22 ;
commit;

select middle_initial from employees
where middle_initial >= 'R' and middle_initial is NOT null;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file DEV:[DIR]RDSBUGCHK.DMP;

The following similar query works using the "less than" operator, as in the following example.

select middle_initial from employees
where middle_initial < 'R' and middle_initial is NOT null;
Tables:
 0 = EMPLOYEES
Conjunct: NOT MISSING (0.MIDDLE_INITIAL)
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [1:0]
 Keys: 0.MIDDLE_INITIAL < 'R'
0 rows selected

The problem occurs when the index is partitioned with a descending segment.

The key parts of this query which contributed to the situation leading to the error are these:

The index is partitioned.1.
The segment is descending.2.
One of the WHERE clauses uses a "greater than or equal" or "greater than" operator, and the other is a
NOT Null.

3.

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

Oracle® Rdb for OpenVMS

3.1.6 Query Bugchecks When the Index is Partitioned With Descending Segment 71

3.2 SQL Errors Fixed

3.2.1 Unexpected SQL−F−PARSE_STACK_OVE Error On
Repeated CREATE VIEW Statements

Bug 13773153

In prior versions of Oracle Rdb, SQL might fail with a SQL−F−PARSE_STACK_OVE error if view
definitions from RMU Extract were executed.

The following example shows a view containing COUNT and DISTINCT of a value expression.

SQL> create view TEST (A_ID, A_FLAG)
cont> as select A_ID,
cont> case
cont> when (select count(distinct H.A_DATE)
cont> from HISTORY H
cont> where H.A_ID = M.A_ID)
cont> >= 2 then 'Y'
cont> else 'N'
cont> end
cont> from MARGIN M;
SQL>

The SQL semantics for COUNT (DISTINCT) is to ignore all NULL value results for that expression.
Therefore, an implicit IS NOT NULL clause is added to the WHERE clause to enforce these semantics. RMU
Extract includes this implicit clause when extracting the view since that tool does not know if the clause was
added as part the users CREATE VIEW definition or implicitly by SQL. Notice the clause "C2.A_DATE is
not null" in the output shown below for this same VIEW deifnition.

$ rmu/extract/item=view/option=(filename_only,noheader) abc
set verify;
set language ENGLISH;
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001, TIME 001;
attach 'filename ABC';
create view TEST
 (A_ID,
 A_FLAG) as
 (select
 C1.A_ID,
 case
 when ((select count(distinct C2.A_DATE)
 from HISTORY C2
 where ((C2.A_ID = C1.A_ID)
 and (C2.A_DATE is not null))) >= 2) then 'Y'
 else 'N'
 end
 from MARGIN C1);

commit work;

3.2 SQL Errors Fixed 72

Repeated RMU Extracts of the view and use of the extracted definition to replace the previous version
resulted in a long sequence of "C2.A_DATE is not null" clauses in the query. Eventually this could lead to
errors during CREATE VIEW, such as "%SQL−F−PARSE_STACK_OVE, Parse stack overflow".

This problem has been corrected in Oracle Rdb Release 7.2.5.2. This release of Oracle Rdb will detect that the
semantic check IS NOT NULL for the value expression is already present in the query definition (WHERE
clause or aggregate FILTER clause) and no longer continue to add further "C2.A_DATE is not null" clauses.

3.2.2 Unexpected ARITH_EXCEPT When Using STDDEV
Aggregate Function

Bug 13741723

For some data sets, the VARIANCE function or STDDEV could produce an incorrect result, or in some cases
raise an exception as shown in the example below.

SQL> select variance(t), stddev (t)
cont> from (
cont> select 118733.89 from rdb$database union all
cont> select 118701.17 from rdb$database union all
cont> select 118666.94 from rdb$database) as aa (t);
%RDB−E−ARITH_EXCEPT, truncation of a numeric value at runtime
−SYSTEM−F−FLTINV, floating invalid operation, PC=FFFFFFFF82061BA2, PS=0000000B
SQL>

This problem shows a flaw in the algorithm used to compute the VARIANCE, from which the STDDEV
(standard deviation) is computed. When the sum of the squares of the values is a similar number to the sum
multiplied by the mean, it is possible that the round errors inherent in floating point arithmetic will cause such
errors.

This problem has been corrected in Oracle Rdb Release 7.2.5.2. Oracle Rdb has replaced the old algorithm
with one that is more stable in these circumstances.

3.2.3 Unexpected Bugcheck When REVOKE Used on a
Table With an IDENTITY Column

Bug 13841632

In Oracle Rdb Release 7.2.5.1, a change was made to propagate the ACL of the table to the owned
IDENTITY column. Since that change was made, it is possible to receive an unexpected bugcheck. This is
shown in the example blow.

SQL> revoke ALL on table T1 from PUBLIC after USER3;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RDSBUGCHK.DMP;
SQL>

This problem occurs because only a subset of the ACE entries of the table are copied to the ACL for the
IDENTITY sequence. The bugcheck occurs trying to issue the error ACENOTFND (no matching access
control entry found) and should have been reported by Rdb as:

SQL> revoke ALL on table T1 from PUBLIC after RDBUSER3;

Oracle® Rdb for OpenVMS

3.2.2 Unexpected ARITH_EXCEPT When Using STDDEV Aggregate Function 73

%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−ACENOTFND, no matching access control entry found
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.2. Oracle Rdb now propagates all ACEs, not just
those that allow INSERT on the table. This allows correct behavior for the GRANT and REVOKE statements
on tables with an IDENTITY column.

3.2.4 Unexpected RDB−E−NOT_VALID Error From ALTER
TABLE ... ADD COLUMN

Bug 13790454

In prior releases of Oracle Rdb, it was possible that ALTER TABLE ... ADD COLUMN with a domain
constraint could fail even though the existing data in the table did not violate the domain definition.

Consider the case where a domain constraint is added with a new column that has no DEFAULT or an explicit
DEFAULT of NULL. When the table has existing rows, Rdb partially evaluates the constraint assuming the
column is NULL (this is an attempt to minimize the I/O). Any other DEFAULT expression causes the rows of
the table to be read and the domain constraint evaluated for each row.

However, this partial evaluation is incomplete in handling UNKNOWN conditions. The RDO and CDD
interfaces define different semantics for the treatment of UNKNOWN conditions from the SQL standard and
the current partial evaluation only supports RDO and CDD semantics but does not fully support the SQL
standard.

As defined in the ANSI and ISO SQL Standard: A domain constraint is satisfied by SQL−data if and only if,
for every table T that has a column named C based on that domain, the applicable <search condition>
recorded in the appropriate domain constraint usage evaluates to True or Unknown.

The following example shows the discrepancy between domain constraint evaluation during ALTER TABLE
when data exists in the table and INSERT into an empty table.

SQL> create domain UNSIGNED_INTEGER
cont> integer
cont> check (value >= 0)
cont> not deferrable;
SQL>
SQL> create table SAMPLE_TABLE
cont> (C UNSIGNED_INTEGER
cont>);
SQL>
SQL> insert into SAMPLE_TABLE default values;
1 row inserted
SQL> insert into SAMPLE_TABLE values (100);
1 row inserted
SQL> −− expected failure
SQL> insert into SAMPLE_TABLE values (−1);
%RDB−E−NOT_VALID, validation on field C caused operation to fail
SQL>
SQL> −− unexpected failure on implicit NULL default for new column
SQL> alter table SAMPLE_TABLE
cont> add column D UNSIGNED_INTEGER;
%RDB−E−NO_META_UPDATE, metadata update failed

Oracle® Rdb for OpenVMS

3.2.4 Unexpected RDB−E−NOT_VALID Error From ALTER TABLE ... ADD COLUMN 74

−RDB−E−NOT_VALID, validation on field D caused operation to fail
−RDMS−F−MISSINGINV, existing records in relation SAMPLE_TABLE would violate
VALID IF expression
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

Note that external and SQL functions will now be evaluated by ALTER TABLE ... ADD COLUMN in this
release but were not in previous releases when the default was omitted or was explicitly NULL. If these
functions have side effects, then the database administrator should manage them accordingly.

3.2.5 Unexpected Partition Chosen When Malformed
Storage Map Created

Bug 3867875

In prior releases of Oracle Rdb, the ordering of the WITH LIMIT values in the storage map were not
validated. This could allow the creation of malformed storage maps that did not correctly partition the inserted
values.

The following example shows that the incorrectly ordered limits cause the row with FLD1 of 500 to be
inserted in an unexpected partition.

SQL> create table tst_table (
cont> fld1 integer,
cont> ttxt char(5)
cont>);
SQL>
SQL> create storage map tst_map for tst_table
cont> partitioning is not updatable
cont> store using (fld1)
cont> in TST_AREA1 with limit of (200)
cont> in TST_AREA2 with limit of (300)
cont> in TST_AREA3 with limit of (600)
cont> in TST_AREA4 with limit of (450)
cont> in TST_AREA5 with limit of (750)
cont> ;
SQL>
SQL> insert into tst_table values (150,'bbbbb') returning dbkey;
 DBKEY
 64:2:1
1 row inserted
SQL> insert into tst_table values (250,'ccccc') returning dbkey;
 DBKEY
 65:2:1
1 row inserted
SQL> insert into tst_table values (440,'ddddd') returning dbkey;
 DBKEY
 66:2:1
1 row inserted
SQL> insert into tst_table values (500,'aaaaa') returning dbkey;
 DBKEY
 66:2:2
1 row inserted
SQL> insert into tst_table values (700,'ddddd') returning dbkey;
 DBKEY
 68:2:1

Oracle® Rdb for OpenVMS

3.2.5 Unexpected Partition Chosen When Malformed Storage Map Created 75

1 row inserted
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.2. Oracle Rdb now validates the partition values
from an ascending set of distinct partitions. This example shows the new correct diagnostics.

SQL> create storage map tst_map for tst_table
cont> partitioning is not updatable
cont> store using (fld1)
cont> in TST_AREA2 with limit of (200)
cont> in TST_AREA3 with limit of (300)
cont> in TST_AREA1 with limit of (600)
cont> in TST_AREA4 with limit of (450)
cont> in TST_AREA5 with limit of (750)
cont> ;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−MAPNOTDEF, map "TST_MAP" has not been defined
−RDMS−E−MAPLIMITORDBAD, partition 4 limits are not in order for partitioned
table TST_MAP
SQL>

3.2.6 Workload and Storage Statistics Not Cleared by
TRUNCATE TABLE

Bug 8741822

In prior versions of Oracle Rdb, neither the storage nor the workload statistics were cleared when a
TRUNCATE TABLE statement was executed. This could lead to poor strategy selection by the optimizer
which was using the old (stale) statistics.

This problem has been corrected in Oracle Rdb Release 7.2.5.2. TRUNCATE TABLE now explicitly clears
the Rdb$Workload rows associated with the table, as well as removing any index or table storage statistics.

Oracle® Rdb for OpenVMS

3.2.6 Workload and Storage Statistics Not Cleared by TRUNCATE TABLE 76

3.3 RDO and RDML Errors Fixed

3.3.1 GET DIAGNOSTICS Did Not Return a Valid
IMAGE_NAME in Some Cases

Bug 14161648

In prior versions of Oracle Rdb, the data used for the GET DIAGNOSTICS IMAGE_NAME item were not
provided for all images. In particular, applications written with an RDML module that performed the attach to
the database would have spaces returned for the image name.

This can be observed by using the logical name RDMS$SET_FLAGS to display the database parameter
buffer during attach to the database. It is the IMAGE_NAME parameter value that is used for the GET
DIAGNOSTICS statement, or the SYS_GET_DIAGNOSTICS function. Notice that there is no "Database
Parameter Buffer" displayed.

$ define rdms$set_flags database
$ run test_image
 ATTACH #1, Database DISK1:[TESTING]PERSONNEL.RDB;1
 RDMS$BIND_WORK_FILE = "DISK1:[TESTING]RDMSTTBL$PBKLMDHG71B1GJLVKN80.TMP;"
(Visible = 0)
 DETACH #1
$

This problem has been corrected in Oracle Rdb Release 7.2.5.2. The Rdb/Dispatch layer has been corrected to
provide the image name in all cases. Note that applications running under older Rdb versions in a
multiversion environment may also notice a change in behavior because the Rdb/Dispatch image is used for
all versions.

The following example shows the expected output.

$ define rdms$set_flags database
$ run test_image
 ATTACH #1, Database DISK1:[TESTING]PERSONNEL.RDB;1
~P Database Parameter Buffer (version=2, len=44)
0000 (00000) RDB$K_DPB_VERSION2
0001 (00001) RDB$K_FACILITY_ALL
0002 (00002) RDB$K_DPB2_IMAGE_NAME "MYNODE::DISK1:[TESTING]TEST_IMAGE.EXE;1"
 RDMS$BIND_WORK_FILE = "DISK1:[TESTING]RDMSTTBL$FVS6UTIG71B1GJLVKN80.TMP;"
(Visible = 0)
 DETACH #1
$

3.3 RDO and RDML Errors Fixed 77

3.4 RMU Errors Fixed

3.4.1 RMU/BACKUP/PLAN Displays Too Vague Message
When RMU_SERVICE Is Not Running

Bug 13640704

In releases prior to Oracle Rdb 7.2.5.2, the Oracle Rdb RMU/BACKUP/PLAN command displayed the
generic RMU−F−UNRECDBSERR error if the SQL/Services RMU_SERVICE service was not running. This
message is generic and does not help diagnose the problem. The RMU/EXECUTE/COMMAND command
displays the more specific SQLSRV−E−SVCNOTRUN error in the same situation.

For example, in prior releases, the RMU/BACKUP/PLAN command displayed the
RMU−F−UNRECDBSERR, as shown below.

$ RMU/BACKUP/PLAN MF_PERS.PLAN
%RMU−F−ERREXCCMD, Error executing command "rmu/backup/plan
1DGA15:[PERSONNEL]MF_PERS.PLAN;"
−RMU−F−UNRECDBSERR, Network error: Unrecognized DBS error.
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 30−JAN−2012 09:55:32.72

The more descriptive RMU−E−SVCNOTRUN error message is now displayed.

$ RMU/BACKUP/PLAN MF_PERS.PLAN
%RMU−F−ERREXCCMD, Error executing command "rmu/backup/plan
1DGA15:[PERSONNEL]MF_PERS.PLAN;"
−RMU−E−SVCNOTRUN, Network error: RMU_SERVICE service is not running.
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 30−JAN−2012 09:55:32.72

This problem has been corrected in Oracle Rdb Release 7.2.5.2. RMU now displays the more descriptive
RMU−E−SVCNOTRUN message.

3.4.2 RMU/RECOVER/ORDER_AIJ_FILES Error Handling
Problem When Ordering Files

Bug 13608020

There was an error handling problem if an error occurred when RMU/RECOVER/ORDER_AIJ_FILES was
sorting the input AIJ files in ascending order by sequence number. An access violation occurred in the error
handler followed by a loop producing multiple access violations which produced multiple
RMUBUGCHK.DMP files. A "CTRL/Y" had to be executed to terminate the loop. This problem has now
been fixed.

The following example shows the problem. An error exception occurs when RMU/RECOVER is sorting the
input AIJ files in ascending order by sequence number at the start of the recovery operation because one of the
AIJ files is locked by another user. The error handler for this error exception gets into a loop which produces
multiple "%SYSTEM−F−ACCVIO" errors and multiple RMUBUGCHK.DMP files. This loop can only be
terminated by a "CTRL/Y".

3.4 RMU Errors Fixed 78

$ RMU/RECOVER AIJB* /ORDER_AIJ_FILES/NOLOG
%RMU−F−FILACCERR, error reading journal file
DEVICE:[DIRECTORY]AIJB_4.AIJ;1
−RMS−E−FLK, file currently locked by another user
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at 13−FEB−2012 13:37:29.91
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=000000000000018C, PC=000000008078F4A1, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file
DEVICE:[DIRECTORY]RMUBUGCHK.DMP;
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at 13−FEB−2012 13:37:30.03
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=000000000000018C, PC=000000008078F4A1, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file
DEVICE:[DIRECTORY]RMUBUGCHK.DMP;
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at 13−FEB−2012 13:37:30.11
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=000000000000018C, PC=000000008078F4A1, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file
DEVICE:[DIRECTORY]RMUBUGCHK.DMP;
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at 13−FEB−2012 13:37:30.19
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=000000000000018C, PC=000000008078F4A1, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file
DEVICE:[DIRECTORY]RMUBUGCHK.DMP_MINI;
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at 13−FEB−2012 13:37:30.25

The following example shows that this problem has been fixed. Now when the AIJ file to be sorted is locked
by another user, the error exception is handled correctly. The fatal error is output and the recovery is aborted.

$ RMU/RECOVER AIJB* /ORDER_AIJ_FILES/NOLOG
%RMU−F−FILACCERR, error reading journal file
DEVICE:[DIRECTORY]AIJB_4.AIJ;1
−RMS−E−FLK, file currently locked by another user
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at 13−FEB−2012 13:40:40.26

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.4.3 RMU/BACKUP/PARALLEL Deadlock and Bugcheck
With Access Violation

Bugs 13635595 and 4615389

In releases prior to Oracle Rdb Release 7.2.5.2, there was a problem in RMU/BACKUP/PARALLEL where
worker executors would sometimes deadlock against one another when fast incremental backup was enabled.
Then, an access violation occurred while processing the deadlock error and resulted in RMU and Oracle
SQL/Services executor bugchecks. Therefore, what the user saw was bugchecks showing an access violation.

The following would be seen in the RMU bugcheck file.

SYSTEM−F−ACCVIO, access violation, virtual address=0000000000000000
Exception occurred at RMUSHR72\BACKUP_READ_ROOT + 000079A1

Oracle® Rdb for OpenVMS

3.4.3 RMU/BACKUP/PARALLEL Deadlock and Bugcheck With Access Violation 79

The following would be seen in the SQL/Services executor bugcheck file.

DBS−F−BUGCHECK in RMUEXEC at line 477
Internal error: unhandled exception or signalled condition '%CMA−F−EXCCOP,
exception raised; VMS condition code follows, −SYSTEM−F−ACCVIO, access
violation, reason mask=00, virtual address=0000000000000001,
PC=000000000094A111, PS=0000001B'

The deadlock error was only displayed if the logical RMU$DEBUG_FLAGS was defined as
RMU_DEBUG_ALL.

WORKER_001: %RMU−F−DEADLOCK, deadlock on Fast−Incremental−Backup
WORKER_001: %RMU−F−FTL_RMU, Fatal error for RMU operation at 23−JAN−2012
09:39:10.79

Both problems have been corrected in Oracle Rdb Release 7.2.5.2. RMU/BACKUP/PARALLEL worker
executors will no longer deadlock and error handling has been corrected so that it will not cause access
violations and bugchecks.

3.4.4 RMU/BACKUP/PARALLEL Plan Name Length Parsing
Errors

Bug 13836182

The Oracle Rdb RMU parallel backup command creates the plan name entry in the parallel backup plan file
("Plan Name = ") to be the same as the plan file name specified by the /LIST_PLAN qualifier on the parallel
backup command line. However, there was a problem where Rdb enforced a maximum file name length of 39
characters for the plan file name based on the VMS ODS−2 specification, but when RMU read and parsed the
plan file, it enforced a maximum length of 31 characters for the plan name entry. Therefore, the plan name
entry in the plan file created by RMU could have a length of up to 39 characters but when RMU read and
parsed the plan file to execute the parallel backup, it would output a syntax error if the plan name length
exceeded 31 charcters.

A related problem was that if the user specified /EXECUTE for immediate execution of the parallel backup on
the parallel backup command line and did not specify "/LIST_PLAN=planfile_name", a unique plan name
was generated that was 32 characters long, so a syntax error always occurred in this case when the temporary
plan file was read and parsed by RMU before the temporary plan file was executed and then deleted.

The way to avoid these problems is to always use the /LIST_PLAN qualifier to specify a plan file name no
longer than 31 characters. Also, if a plan file has been created which has a "Plan Name = " entry longer than
31 characters, the plan file can be edited to reduce the plan file name to 31 characters and then the
RMU/BACKUP/PLAN command can be used to execute the edited plan file.

These problems have been fixed and now the plan file name maximum length and the plan name maximum
length are both set to 39 characters.

The following two examples show the problem. In the first parallel backup command, the /LIST_PLAN
qualifier is not used to name the plan file so a default temporary plan file with a generated unique file name is
created, executed and then deleted. However, the plan name derived from the plan file name in the plan file is
32 characters long and a parsing error is returned since the incorrect parsing logic only allows a plan name
length of 31 characters. In the second example, the same problem occurs because even though the

Oracle® Rdb for OpenVMS

3.4.4 RMU/BACKUP/PARALLEL Plan Name Length Parsing Errors 80

/LIST_PLAN qualifier is used to specify the plan file name, the plan file name specified is also 32 characters
long and the incorrect parsing logic only allows a plan name length of 31 characters.

$ rmu/backup −
 /parallel=executor=3 −
 /disk_file −
 /nolog −
 /execute −
 /checksum_verification −
 /active_io=5 −
 /page_buffers=5 −
 /crc=checksum −
 /noquiet_point −
 mf_personnel −
 [.dir1]parallel_backup.rbf −
 ,[.dir2] −
 ,[.dir3]
%RMU−F−PLNSYNTAX, Syntax error in plan file
 PLAN NAME = 'BACKUP_PLAN_CSB45CBQ4VA1GD3N3E80'
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 13−MAR−2012 18:52:04.35
$
$ rmu/backup −
 /parallel=executor=3 −
 /disk_file −
 /nolog −
 /execute −
 /checksum_verification −
 /active_io=5 −
 /page_buffers=5 −
 /crc=checksum −
 /noquiet_point −
 /list_plan = BACKUP_PLAN_NAME_LONGER_THAN_31C.PLAN −
 mf_personnel −
 [.dir1]parallel_backup.rbf −
 ,[.dir2] −
 ,[.dir3]
%RMU−F−PLNSYNTAX, Syntax error in plan file
 PLAN NAME = 'BACKUP_PLAN_NAME_LONGER_THAN_31C'.
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 13−MAR−2012 19:53:07.21
$

The following example shows that this problem has been fixed. The same two parallel backup commands are
used, but both commands succeed because the plan file parsing logic has been corrected to allow up to 39
characters for the plan file name.

$ rmu/backup −
 /parallel=executor=3 −
 /disk_file −
 /nolog −
 /execute −
 /checksum_verification −
 /active_io=5 −
 /page_buffers=5 −
 /crc=checksum −
 /noquiet_point −
 mf_personnel −
 [.dir1]parallel_backup.rbf −
 ,[.dir2] −
 ,[.dir3]
%RMU−I−COMPLETED, BACKUP operation completed at 14−MAR−2012 18:04:32.53

Oracle® Rdb for OpenVMS

3.4.4 RMU/BACKUP/PARALLEL Plan Name Length Parsing Errors 81

$ show symbol $status
 $STATUS == "%X10000001"
$
$ rmu/backup −
 /parallel=executor=3 −
 /disk_file −
 /nolog −
 /execute −
 /checksum_verification −
 /active_io=5 −
 /page_buffers=5 −
 /crc=checksum −
 /noquiet_point −
 /list_plan = BACKUP_PLAN_NAME_LONGER_THAN_31C.PLAN −
 mf_personnel −
 [.dir1]parallel_backup.rbf −
 ,[.dir2] −
 ,[.dir3]
%RMU−I−COMPLETED, BACKUP operation completed at 14−MAR−2012 19:21:15.47
$ show symbol $status
 $STATUS == "%X10000001"
$

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.4.5 Unexpected Bugcheck When Using RMU Collect
Optimizer_Statistics

Bugs 9584258 and 12928341

In prior releases of Oracle Rdb, the RMU Collect Optimizer_Statistics might, in rare cases, bugcheck during
processing of a table. The cause was highly dependent on the data in the table. The bugcheck footprint would
have been similar to the following:

Bugcheck dump summarizer output:

Itanium OpenVMS 8.3−1H1•
Oracle Rdb Server 7.2.4.0.0•
Got a RMUBUGCHK.DMP•
SYSTEM−F−ACCVIO, access violation, virtual address=00000000054E56F6•
Exception occurred at RMU72\RMUCOL_CALC_WORKLOAD_STATS + 00005BE1•
Called from RMU72\RMUCOL_CALC_WORKLOAD_STATS + 000004B0•
Called from RMU72\RMU$COLLECT_CONVERT + 00017B40•
Called from RMU72\RMUCLI$COLLECT + 00000260•
Running image RMU72.EXE•
Command line was: RMUI/COLLECT
OPTIMIZER/TABLE=tablename/TRANSACTION=READ/LOG databasename

•

This problem was corrected in Oracle Rdb Release 7.2.5.

3.4.6 Unexpected RECDEFSYN From RMU Unload

Bug 4260669

Oracle® Rdb for OpenVMS

3.4.5 Unexpected Bugcheck When Using RMU Collect Optimizer_Statistics 82

In prior releases of Oracle Rdb, RMU Load would fail when the Record Definition file contained names with
spaces or were in special character sets such as DEC_KANJI.

The following example shows that RMU Load fails with a RECDEFSYN error when the name contains
unexpected characters (in this case space characters).

$ rmu/unload abc "all lower case" n/record=file=nws
%RMU−I−DATRECUNL, 1 data records unloaded 3−APR−2012 14:49:26.63.
$ rmu/load abc "all lower case" n/record=file=nws
 DEFINE FIELD a column DATATYPE IS SIGNED LONGWORD.
%RMU−F−RECDEFSYN, Syntax error in record definition file
 'DEFINE' FIELD A COLUMN DATATYPE IS SIGNED LONGWORD.
%RMU−I−DATRECSTO, 0 data records stored 3−APR−2012 14:49:26.73.
%RMU−F−FTL_LOAD, Fatal error for LOAD operation at 3−APR−2012 14:49:26.73
$

This problem has been corrected in Oracle Rdb Release 7.2.5.2. RMU Unload will now generate delimited
identifiers for any names not in uppercase ASCII. RMU Load now correctly handles delimited identifiers.

3.4.7 Unexpected Reset of RECORD LENGTH in AIP After
RMU Repair Initialize=TSN Command

Bug 13975847

In prior versions of Oracle Rdb, the RMU Repair Initialize=TSN command would incorrectly set the record
length in the AIP (area inventory pages) to zero. The subsequent rebuild of the SPAM pages would compute
inaccurate THRESHOLDS for UNIFORM logical areas and mark the fullness to threshold zero.

The impact of this would be reduced performance because the SPAM thresholds were no longer a good
indication of free space on the page.

A workaround for the affected databases was to restore the record length using the RMU/SET AIP/LENGTH
and then rebuild the SPAM pages using RMU/SET AIP /REBUILD. These commands can be performed
online if necessary.

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.4.8 RMU/REPAIR/INITIALIZE=TSN Fails With
SYSTEM−F−ACCVIO and Bugchecks

Bug 13964771

In prior versions of Oracle Rdb, it was possible for the RMU/REPAIR/INIT=TSN command to generate an
access violation and bugcheck with a footprint similar to the following:

Alpha OpenVMS 8.2
Oracle Rdb Server 7.2.5.1.1
Got a RMUBUGCHK.DMP
SYSTEM−F−ACCVIO, access violation, virtual address=0000000000B26001
Exception occurred at RMU72\RMUFIX$INIT_ONE_STAREA + 00000764
Called from RMU72\RMUCLI$REPAIR + 0000174C
Called from RMU72\RMU_DISPATCH + 00000E64

Oracle® Rdb for OpenVMS

3.4.7 Unexpected Reset of RECORD LENGTH in AIP After RMU Repair Initialize=TSN Command83

Called from RMU72\RMU_STARTUP + 000004DC
Running image RMU72.EXE
Command line was: RMUI/REPAIR/INIT=TSN

This problem does not happen to all databases on which the RMU/REPAIR/INIT=TSN is executed.
Additionally, it could only occur on mixed storage areas.

It is difficult to predict which databases could be affected, as it is related to a combination of factors including
the size of spam page intervals, and the size of the data page. It is more likely to occur when spam intervals
are not evenly divisible by the size of the buffers (65536 bytes / bytes per data page) into which we read the
data pages.

There is no workaround for this problem. Oracle recommends upgrading to this release prior to running the
RMU/REPAIR/INIT=TSN command.

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.4.9 New Details for Space Management Output From RMU
Dump Header

Bug 14030557

The number of SPAM pages in a UNIFORM area is limited by the size of the bitvector managed by the ABM
(area bitmap pages). Only one clump of ABM pages is allocated for each logical area and the clump size is
computed based on the number of pages (PAGE SIZE) that can fit into a database buffer (BUFFER SIZE).
For example, a default database created with BUFFER SIZE IS 6 BLOCKS and PAGE SIZE IS 2 BLOCKS
will default to a clump size of 3 pages for those logical areas mapped to the uniform physical area.

RMU Dump Header has been enhanced to display the clump page count for uniform areas, and to also
compute the upper limit of usable SPAM pages in that physical area.

The following example shows the modified "Space Management" section of RMU/DUMP/HEADER.

 Space Management...
 − SPAMS are enabled
 − Interval is 1089 data pages
 − Current SPAM page count is 2
 − Clump page count is 3
 − Maximum usable SPAM page count is 23328

Note that "Clump page count" and "Maximum usable SPAM page count" are only displayed for UNIFORM
page format areas.

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.4.10 New Option POSITION_COLUMN Added to RMU
Extract

Bug 14085671

Oracle® Rdb for OpenVMS

3.4.9 New Details for Space Management Output From RMU Dump Header 84

In prior versions of Oracle Rdb, tables that were altered to reorder columns using BEFORE COLUMN and
AFTER COLUMN clauses were extracted as a CREATE TABLE statement followed by an ALTER TABLE
statement. This is done by RMU Extract to ensure that dependencies between columns (COMPUTED BY,
AUTOMATIC AS and DEFAULT clauses) are maintained if possible.

The following example shows the output for a simple table.

create table TEST_TABLE (
 FLD1
 CHAR (10),
 FLD2
 CHAR (10),
 FLD3
 CHAR (10));

 −− apply the alternate column ordering
 alter table TEST_TABLE
 alter column FLD3 before column FLD1;

In some cases, the user may wish to have only a CREATE TABLE statement. Therefore, this release of RMU
Extract supports a new Option, POSITION_COLUMN, which will order columns by position instead of the
default field identification. Note that such definitions may not be able to create the table if referenced columns
appear after their reference. The default option is NOPOSITION_COLUMN.

This change has been made in Oracle Rdb Release 7.2.5.2.

3.4.11 RMU/VERIFY/LAREA Access Violation if Invalid
Logical Area Id Specified

If the /LAREA qualifier, when used with the RMU/VERIFY command to verify specific logical areas for an
Oracle Rdb database, specified an invalid logical area id number which did not exist in the target database, an
access violation occurred and the verify operation was aborted with a fatal error.

This problem has been fixed and now, instead of an access violation, error messages identifying the problem
and specifying the valid logical area id range for the target database will be output before the verify is aborted.

The following example shows the problem. The logical area id numeric values "0" and then "65888525"
specified with the /LAREA qualifier do not exist in the Oracle Rdb database being verified. This causes an
access violation, the creation of an RMUBUGCHK.DMP file and a termination of the verify operation.

$ RMU/VERIFY/NOLOG/LAREA=0 MF_PERSONNEL
%RMU−F−ABORTVER, fatal error encountered; aborting verification
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
 virtual address=000000000000001D, PC=00000000806A8D80, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file DEVICE:[DIRECTORY]RMUBUGCHK.DMP;
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 1−JUN−2012 14:31:02.58
$ RMU/VERIFY/NOLOG/LAREA=65888525 MF_PERSONNEL
%RMU−F−ABORTVER, fatal error encountered; aborting verification
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
 virtual address=00000000202ACDF4, PC=00000000806A8D50, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file DEVICE:[DIRECTORY]RMUBUGCHK.DMP;
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 1−JUN−2012 14:31:29.40

Oracle® Rdb for OpenVMS

3.4.11 RMU/VERIFY/LAREA Access Violation if Invalid Logical Area Id Specified 85

The following example shows that this problem has been fixed. Now the same invalid logical area id numbers
specified with the RMU/VERIFY/LAREA qualifier still cause the verify to be aborted but instead of an access
violation, error messages are ouput which identify the problem and the valid logical area id number range for
the target database.

$ RMU/VERIFY/NOLOG/LAREA=0 MF_PERSONNEL
%RMU−W−BADLAREA, could not ready logical area 0,
 valid logical areas are between 1 and 104
%RMU−F−NOTLAREA, "0" is not a valid logical area name or number
%RMU−F−ABORTVER, fatal error encountered; aborting verification
$ RMU/VERIFY/NOLOG/LAREA=65888525 MF_PERSONNEL
%RMU−W−BADLAREA, could not ready logical area 65888525,
 valid logical areas are between 1 and 104
%RMU−F−NOTLAREA, "65888525" is not a valid logical area name or number
%RMU−F−ABORTVER, fatal error encountered; aborting verification

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.4.12 RMU/BACKUP/LIBRARIAN Ignored Specified Block
Sizes Over 32256

The /BLOCK_SIZE qualifier, when used with the Oracle Rdb RMU/BACKUP/LIBRARIAN command,
allows the user to specify a numeric block size in bytes when an Rdb database backup file is written to a
media management product which supports the Oracle Media Management API interface. A block size
between 2048 bytes (512*4) and 65024 bytes (512*127) can be specified. The block size will be rounded up
to the nearest multiple of 512 bytes if necessary. The default block size is 32256 bytes (512*63).

There was a problem which caused any block size specified with the /BLOCK_SIZE qualifier which was
larger than 32256 bytes to be ignored even though a specified block size up to 65024 bytes was accepted as a
valid value. In these cases, the default block size of 32256 was actually used and specified to the media
management product.

This problem has been fixed and now the full range of values between 2048 and 65024 that can be specified
with the BLOCK_SIZE qualifier will be used and specified to the media management product. A default
block size value of 32256 bytes will continue to be the default if the /BLOCK_SIZE qualifier is not used with
the RMU/BACKUP/LIBRARIAN command. Values specified by the /BLOCK_SIZE qualifier within the
valid range will continue to be rounded up to the nearest multiple of 512 bytes as necessary.

The following example shows the problem. The first two backup commands show that block size values in
bytes specified by the /BLOCK_SIZE qualifier must be between 2048 and 65024 bytes. The third backup
command shows that even though a valid block size of 65024 is specified, the default block size of 32256
bytes is actually used. Note that a special debug logical is defined to show the actual block size passed to the
media management product. Not all of the debug information output by this logical has been shown in the
example.

$ RMU/BACKUP/LIBRARIAN=(WRITER=1)/BLOCK_SIZE=2047/NOLOG MF_PERSONNEL MFP.RBF
%RMU−F−VALLSSMIN, value (2047) is less than minimum allowed value (2048) for
BLOCK_SIZE
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at dd−mmm−yyyy hh:mm:ss.xxxx
$ RMU/BACKUP/LIBRARIAN=(WRITER=1)/BLOCK_SIZE=65025/NOLOG MF_PERSONNEL MFP.RBF
%RMU−F−VALGTRMAX, value (65025) is greater than maximum allowed value (65024)
for BLOCK_SIZE
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at dd−mmm−yyyy hh:mm:ss.xxxx

Oracle® Rdb for OpenVMS

3.4.12 RMU/BACKUP/LIBRARIAN Ignored Specified Block Sizes Over 32256 86

$
$ DEFINE RMU$DEBUG_SBT 1
$ RMU/BACKUP/LIBRARIAN=(WRITER=1)/BLOCK_SIZE=65024/NOLOG MF_PERSONNEL MFP.RBF

rmuio_sbtbackup called, block_size = 32256

$ DEASSIGN/NOLOG RMU$DEBUG_SBT

The following example shows that this problem has been fixed. Now all valid block size values between 2048
and 65024 bytes will be used and passed to the media management product. Values specified by the
/BLOCK_SIZE qualifier within the valid range will continue to be rounded up the the nearest multiple of 512
bytes as necessary.

$ DEFINE RMU$DEBUG_SBT 1
$ RMU/BACKUP/LIBRARIAN=(WRITER=1)/BLOCK_SIZE=65024/NOLOG MF_PERSONNEL MFP.RBF

rmuio_sbtbackup called, block_size = 65024

$ DEASSIGN/NOLOG RMU$DEBUG_SBT

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.4.13 RMU/RESTORE/ONLY_ROOT Did Not Support the
/ENCRYPT Qualifier

The RMU/RESTORE/ONLY_ROOT command restores only the root file (*.RDB) from a backup file
(*.RBF) of an Oracle Rdb database. There was a problem which caused the RMU/RESTORE/ONLY_ROOT
command to not support the /ENCRYPT qualifier which must be used to restore database files from encrypted
Rdb backup files. The only workaround was to do a full restore of all of the Rdb database files including the
root file, since the /ENCRYPT command is supported for a full restore of the database.

This problem has been fixed and now the /ENCRYPT qualifier can be used with the
RMU/RESTORE/ONLY_ROOT command to restore only the database root file from an encrypted database
backup file (*.RBF) created by using the /ENCRYPT qualifier with the RMU/BACKUP command.

The following example shows the problem. The RMU/BACKUP command backs up the MF_PERSONNEL
database to the encrypted backup file MF_PERSONNEL_BCK.RBF using the /ENCRYPT qualifier. Then the
MF_PERSONNEL database is deleted and then restored from the encrypted MF_PERSONNEL_BCK.RBF
using the /ENCRYPT command to de−encrypt the restored database files. Then the restored
MF_PERSONNEL.RDB database root file is deleted. When the first RMU/RESTORE/ONLY_ROOT
command is used to restore the deleted database root file, an error is output because the /ENCRYPT qualifier
must be used to de−encrypt the encrypted backup file. But when the /ENCRYPT qualifier was then specified
with the second RMU/RESTORE/ONLY_ROOT command, the root file restore failed because the
RMU/RESTORE/ONLY_ROOT command did not support the /ENCRYPT qualifier.

$ RMU/BACKUP/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOLOG −
 MF_PERSONNEL.RDB MF_PERSONNEL_BCK.RBF
%RMU−I−ENCRYPTUSED, Encryption key required when future restore performed.
$ SQL
DROP DATABASE FILENAME MF_PERSONNEL;
EXIT;
$ RMU/RESTORE/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOCDD/NOLOG
MF_PERSONNEL_BCK
%RMU−I−AIJRSTAVL, 0 after−image journals available for use

Oracle® Rdb for OpenVMS

3.4.13 RMU/RESTORE/ONLY_ROOT Did Not Support the /ENCRYPT Qualifier 87

%RMU−I−AIJISOFF, after−image journaling has been disabled
%RMU−W−USERECCOM, Use the RMU Recover command. The journals are not available.
$ RMU/VERIFY/NOLOG MF_PERSONNEL
$ DELETE MF_PERSONNEL.RDB;*
$ RMU/RESTORE/ONLY_ROOT/NOLOG MF_PERSONNEL_BCK
%RMU−F−ENCRYPTSAVSET, save set is encrypted, /ENCRYPT must be specified
%RMU−F−FATALERR, fatal error on RESTORE_ROOT_ONLY
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 21−JUN−2012 09:31:56.41
$ RMU/RESTORE/ONLY_ROOT/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOLOG
MF_PERSONNEL_BCK.RBF
%DCL−W−IVQUAL, unrecognized qualifier − check validity, spelling, and placement
\ENCRYPT\

The following example shows that this problem has been fixed. The RMU/BACKUP command backs up the
MF_PERSONNEL database to the encrypted backup file MF_PERSONNEL_BCK.RBF using the
/ENCRYPT qualifier. Then the MF_PERSONNEL database is deleted and then restored from the encrypted
MF_PERSONNEL_BCK.RBF using the /ENCRYPT command to de−encrypt the restored database files.
Then the MF_PERSONNEL.RDB database root file is deleted. When the first
RMU/RESTORE/ONLY_ROOT command is used to restore the deleted database root file, an error is output
because the /ENCRYPT qualifier must be used to de−encrypt the encrypted backup file. Now when the
/ENCRYPT qualifier is then specified with the second RMU/RESTORE/ONLY_ROOT command, the root
file restore succeeds because the RMU/RESTORE/ONLY_ROOT command now supports the /ENCRYPT
qualifier.

$ RMU/BACKUP/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOLOG −
 MF_PERSONNEL.RDB MF_PERSONNEL_BCK.RBF
%RMU−I−ENCRYPTUSED, Encryption key required when future restore performed.
$ SQL
DROP DATABASE FILENAME MF_PERSONNEL;
EXIT;
$ RMU/RESTORE/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOCDD/NOLOG
MF_PERSONNEL_BCK
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
%RMU−W−USERECCOM, Use the RMU Recover command. The journals are not available.
$ RMU/VERIFY/NOLOG MF_PERSONNEL
$ DELETE MF_PERSONNEL.RDB;*
$ RMU/RESTORE/ONLY_ROOT/NOLOG MF_PERSONNEL_BCK
%RMU−F−ENCRYPTSAVSET, save set is encrypted, /ENCRYPT must be specified
%RMU−F−FATALERR, fatal error on RESTORE_ROOT_ONLY
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 21−JUN−2012 09:45:52.41
$ RMU/RESTORE/ONLY_ROOT/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOLOG
MF_PERSONNEL_BCK.RBF
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
$ RMU/VERIFY/NOLOG MF_PERSONNEL

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.4.14 RdbALTER Documented Syntax LOCKED_SPACE
Returned a Syntax Error

Bug 14225192

The Oracle Rdb RdbALTER utility, invoked by the RMU/ALTER command, provides a low−level patch
capability that allows the user to make changes to Rdb database pages and other structures. The Oracle RMU

Oracle® Rdb for OpenVMS

3.4.14 RdbALTER Documented Syntax LOCKED_SPACE Returned a Syntax Error 88

Reference Manual describes the LOCKED_SPACE parameter used with the RdbALTER DEPOSIT and
DISPLAY commands as a "2−byte field" on a database page which indicates "how much free space is
allocated for exclusive use by a recovery unit". However, the RdbALTER utility output a syntax error when
the LOCKED_SPACE syntax was specified because RdbALTER mistakenly expected the syntax
LOCKED_FREE_SPACE to be used instead of the documented syntax LOCKED_SPACE. This problem has
been fixed and now the RdbALTER utility will use the documented syntax LOCKED_SPACE instead of
LOCKED_FREE_SPACE. The undocumented LOCKED_FREE_SPACE syntax will no longer be accepted.

The following example shows the problem. When the RdbALTER utility was invoked and the
LOCKED_SPACE parameter was used with the DEPOSIT or DISPLAY command to change or display the
locked space value on the specified page, a syntax error was returned. When the incorrect undocumented
value LOCKED_FREE_SPACE was used it was accepted by RdbALTER.

$ RMU/ALTER MF_PERSONNEL
%RMU−I−ATTACH, now altering database "DISK:[DIRECTORY]MF_PERSONNEL.RDB;1"

RdbALTER> radix decimal
RdbALTER> area 2 page 25
RdbALTER> deposit locked_space = 100
%RMU−F−SYNTAX, syntax error near " locked_space = 100"
RdbALTER> display locked_space
%RMU−F−SYNTAX, syntax error near " locked_space"
RdbALTER> deposit locked_free_space = 100
RdbALTER> display locked_free_space
 0064 0012 100 bytes locked

RdbALTER> rollback
RdbALTER> exit
$

The following example shows that this problem has been fixed. Now when the RdbALTER utility is invoked
and the correct and documented LOCKED_SPACE parameter is used with the DEPOSIT or DISPLAY
command to change or display the locked space value on the specified page, it is accepted by RdbALTER.

$ RMU/ALTER MF_PERSONNEL
%RMU−I−ATTACH, now altering database "DISK:[DIRECTORY]MF_PERSONNEL.RDB;1"

RdbALTER> radix decimal
RdbALTER> area 2 page 25
RdbALTER> deposit locked_space = 100
RdbALTER> display locked_space
 0064 0012 100 bytes locked
RdbALTER> locked_space = 99
RdbALTER> display locked_space
 0063 0012 99 bytes locked
RdbALTER> commit
RdbALTER> exit
$

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

3.4.15 RMU/REPAIR/INIT=TSN Does Not Initialize Snapshots

In prior releases of Oracle Rdb V7.2, an RMU/REPAIR/INITIALIZE=TSN command did not initialize the
snapshot files unless you explicitly specified the SNAPSHOT keyword on the /INITIALIZE qualifier, as in
the following example.

Oracle® Rdb for OpenVMS

3.4.15 RMU/REPAIR/INIT=TSN Does Not Initialize Snapshots 89

RMU/REPAIR/INITIALIZE=(TSN,SNAPSHOT) databasename

If the snapshot files are not initialized along with the TSNs (Transaction Sequence Number), any previously
used snap page would not get re−used until the current TSN value grew back to the pre−initialized value,
causing snapshot files to grow needlessly.

This problem has been corrected in Oracle Rdb Release 7.2.5.2. When you perform an
RMU/REPAIR/INITIALIZE=TSN command, snapshot files will automatically be initialized, effectively
performing an RMU/REPAIR/INITIALIZE=(TSN,SNAP) command. Currently, there is no way to override
this change of behavior.

Oracle® Rdb for OpenVMS

3.4.15 RMU/REPAIR/INIT=TSN Does Not Initialize Snapshots 90

3.5 RMU Show Statistics Errors Fixed

3.5.1 RMU/SHOW STATISTICS/CLUSTER Did Not Show
Transaction Type

Bug 10009143

In releases prior to Oracle Rdb Release 7.2.5.2, there was a problem in the RMU/SHOW
STATISTICS/CLUSTER command where the Transaction Type was not being displayed on the Checkpoint
Information screen, when the transaction was executed on a node other than the current node. This problem
only occurred when the RMU command was executed on an Itanium system.

This problem has been corrected in Oracle Rdb Release 7.2.5.2. RMU now shows the transaction type on the
Checkpoint Information screen.

3.5.2 RMU Show Statistics Not Using the Full Screen Size
for Details

Bugs 13892668 and 13359835

In prior versions of Oracle Rdb, the RMU Show Statistics display did not fully use the size of the display and,
in some cases, limited the output to 17 lines of details.

This problem has been corrected in Oracle Rdb Release 7.2.5.2. RMU Show Statistics now uses more screen
space when available. The screen size is determined by the terminal page size (SET TERMINAL/PAGE) or
when using the /ROW qualifier on RMU Show Statistics.

3.5 RMU Show Statistics Errors Fixed 91

3.6 Hot Standby Errors Fixed

3.6.1 Checksum Errors on Database Replication Between
VMS IA64 and Alpha

Bug 13485968

When database replication was activated between an Oracle Rdb database on a VMS IA64 cluster node and an
Oracle Rdb database on a VMS Alpha cluster node, replication could fail due to a checksum error returned
when CONNECT REQUEST messages were sent from the MASTER database node to the STANDBY
database node. This problem did not occur if both databases were on VMS IA64 nodes or if both databases
were on VMS Alpha nodes. This checksum error was due to differences between the way the same checksum
algorithm was implemented on the two VMS platforms and occurred for certain CONNECT REQUEST
message lengths which depended on the number of active AIJ files. This problem was not related to any data
corruption. This problem has now been fixed.

The following example shows the problem. When replicating an Rdb database between a VMS IA64 cluster
node and a VMS Alpha cluster node, a checksum error is reported by the Rdb LCS server running on the
MASTER node. The LCS server log shows that when the LCS server on the MASTER node sends the
CONNECT REQUEST message to the Rdb AIJ server on the STANDBY node, a difference between the way
a checkpoint message validation value is calculated on the different platforms causes a checksum error
contained in a CONNECT NAK reply message to be returned from the AIJ server on the STANDBY node to
the LCS server on the MASTER node which indicates the connection request has failed because of a
checksum error.

$ RMU/REPLICATION AFTER START
%RDMS−F−CHECKSUM, checksum error − computed 00000000, page contained
000F0003
%RMU−F−FATALRDB, Fatal error while accessing Oracle Rdb.
%RMU−F−FTL_RMU, Fatal error for RMU operation at 26−JAN−2012
16:37:33.05
$ TYPE LCS_M_2257B0F5.LOG
 26−JAN−2012 13:56:51.17 − AIJ Log Catch−Up Server (LCS) activated

 26−JAN−2012 13:56:51.27 − Sending "Connect_Req" (MSN 0) LRS reply
 expected
 26−JAN−2012 13:56:51.27 − Using network connection 0 [4]
 26−JAN−2012 13:56:51.27 − Using network connection 0 [2]
 26−JAN−2012 13:56:51.27 − Reading 512 message
 26−JAN−2012 13:56:51.38 − setting BUF_LEN=512
 26−JAN−2012 13:56:51.38 − Using network connection 0 [3]
 26−JAN−2012 13:56:51.38 − New AIJSERVER invocation detected (PID
 2253A635)
 26−JAN−2012 13:56:51.38 − Received "Connect_Nak" reply
 26−JAN−2012 13:56:51.38 − AIJSERVER replied
−−

 26−JAN−2012 13:57:23.59 − Shutdown reason: "CONNECT_REQ failed"

−−
 26−JAN−2012 13:57:23.59 − LCSSRV$SHUTDOWN CODE=6
 26−JAN−2012 13:57:23.61 − Unexpected error LCS004: 00DDA5A4 − %RDMS−F−CHECKSUM,
 checksum error − computed 00000000, page contained 000F0003

3.6 Hot Standby Errors Fixed 92

 26−JAN−2012 13:57:23.61 − Sending LSS_SHUTDOWN (0:1)
 26−JAN−2012 13:57:23.61 − Changing LSS state from "Connecting" to "Shutdown"
 26−JAN−2012 13:57:23.61 − Connect request rejected: %RDMS−F−CHECKSUM,
 checksum error − computed 00000000, page contained !XL
 26−JAN−2012 13:57:23.61 − LCSSRV$SHUTDOWN CODE=5
 26−JAN−2012 13:57:23.61 − Unexpected error LCS004: 00DDA5A4 − %RDMS−F−CHECKSUM,
 checksum error − computed 00000000, page contained 000F0003
 26−JAN−2012 13:57:23.61 − Sending LSS_SHUTDOWN (1:1)
 26−JAN−2012 13:57:23.61 − Sending LCS_ACTIVE (1:0)
 26−JAN−2012 13:57:23.61 − Sending LSS_ACTIVE (0:0)
 26−JAN−2012 13:57:23.61 − Shutdown complete

The following example shows that this problem has been fixed. Rdb database replication succeeds between a
VMS cluster IA64 node and a VMS cluster Alpha node. The Rdb LCS server log shows that the checksum
value used to validate the CONNECT REQUEST message has been calculated the same on both platforms.
This time the Rdb AIJ server on the STANDBY node passes the CONNECT REQUEST message on to the
Rdb LRS server on the STANDBY node which sends back a CONNECT ACK reply message to the LCS
server on the MASTER node indicatng that the CONNECT REQUEST has been accepted and database
replication can now proceed.

$ RMU/REPLICATION AFTER START
$ TYPE LCS_M_21D60A44.LOG

 3−JAN−2012 15:28:51.17 − AIJ Log Catch−Up Server (LCS) activated

 3−FEB−2012 15:29:33.80 − Sending "Connect_Req" (MSN 0) LRS reply expected
 3−FEB−2012 15:29:33.80 − Using network connection 0 [4]
 3−FEB−2012 15:29:33.80 − Using network connection 0 [2]
 3−FEB−2012 15:29:33.80 − Reading 512 message
 3−FEB−2012 15:29:35.21 − setting BUF_LEN=512
 3−FEB−2012 15:29:35.21 − Using network connection 0 [3]
 3−FEB−2012 15:29:35.21 − New AIJSERVER invocation detected (PID 21D694DB)
 3−FEB−2012 15:29:35.21 − Received "Connect_Ack" reply
 3−FEB−2012 15:29:35.21 − LRS replied

This problem has been corrected in Oracle Rdb Release 7.2.5.2.

Oracle® Rdb for OpenVMS

3.6 Hot Standby Errors Fixed 93

Chapter 4
Software Errors Fixed in Oracle Rdb Release
7.2.5.1
This chapter describes software errors that are fixed by Oracle Rdb Release 7.2.5.1.

Chapter 4Software Errors Fixed in Oracle Rdb Release 7.2.5.1 94

4.1 Software Errors Fixed That Apply to All
Interfaces

4.1.1 Unexpected Memory Allocation Failure When
Accessing Remote Database

Bug 12760132

In certain cases when accessing a remote database, there could be a small memory leak where memory was
allocated and never released. If this situation continued for a significant length of time, Rdb could exhaust the
available memory resulting in unusual errors.

Using an explicit SET TRANSACTION or START TRANSACTION contributes to this problem.

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.1.2 Alignment Faults on Itanium Using Multiple Mapped
Index Columns

Bug 13552628

In prior releases of Oracle Rdb on the Itanium platform, significant numbers of alignment faults in EXEC
mode would occur when creating indices with multiple mapped columns. This negatively affected system
performance.

drop table t1 cascade if exists;
create table t1
 (f1 bigint, f2 integer, f3 integer);
$write sys$output "Start of populating the table."
begin
declare :i integer;
for :i in 1 to 1000000 step 1
do
insert into t1 values (:i, 1, 1);
end for;
end;
$write sys$output "Start of index creation."
create unique index i1 on t1 (f1 asc,
 f2 mapping values 0 to 32767 asc,
 f3 mapping values 0 to 32767 asc)
type is sorted ranked;

The number of alignment faults can be observed by using the MONITOR ALIGNMENT command on
another screen on the same system.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.1 Software Errors Fixed That Apply to All Interfaces 95

4.1.3 Problem Writing Large TSN Values to Data and Snap
Pages

Bug 12741822

A problem has been discovered that could affect how Transaction Sequence Numbers (TSNs) are stored on
data and snapshot pages. This problem only occurs when TSNs have a value greater than 4,294,967,295.

A TSN is a sequentially increasing number associated with an Rdb database transaction. A unique TSN is
assigned at the start of an update transaction and represents when the transaction started relative to other
transactions.

TSNs are used throughout Rdb memory data structures. Additionally, Rdb writes the TSN to on−disk
structures such as data files, snapshot files, and after−image journal (AIJ) files to reflect which transaction
modified a particular row. Read−only transactions use the TSNs stored on data and snapshot pages to
determine which version of a modified row can be seen by the reader.

The problem occurs due to a change to Rdb Version 7.0 in how TSNs are stored on data and snap pages. Prior
to that version, TSNs were 32−bit integers with a maximum value of 4,294,967,295. With 7.0, the size of the
TSN field was changed to be a 64−bit integer. So as not to require a database unload and reload to support the
larger field size, an algorithm was devised to break up those TSNs that would no longer fit into a 32−bit field
into 2 pieces when the page is updated. The original value would be regenerated prior to reading from the
page.

Recently, it was discovered that this algorithm could cause such large TSNs to possibly be stored incorrectly.
Occurrences would be more prevalent during the window where some active transaction would have TSN
values greater than the 32−bit maximum while others had values less than that maximum.

The problem may manifest itself with errors during an RMU /VERIFY /ONLINE, or with incorrect data
returned from read−only transactions. Additionally, an RMU /BACKUP /ONLINE may produce a backup file
that will restore a corrupted database (although an RMU /RECOVER of all spanning after−journal files will
usually fix the corruption).

If you believe that your database exhibits these symptoms, you can use the offline RMU /REPAIR
/INIT=TSN operation to reset the TSNs. Before running this command, you must have, as a minimum Rdb
version, either the V7.2.4.2 Update 4 kit or this release installed. Refer to the release note "Problem With
RMU/REPAIR/INIT=TSNS When TSNs Exceed 4,294,967,295".

The problem has been fixed in Oracle Rdb Release 7.2.5.1. TSNs will now be stored correctly on data pages.

4.1.4 Query With Complex Shared OR Predicates Returns
Wrong Result

Bug 12690624

The customer demonstrates, using the following reproducer, that the inner join query with complex OR
predicates returns wrong results (3 rows instead of 0 rows).

SELECT T2.NSEG, T2.SENS

Oracle® Rdb for OpenVMS

4.1.3 Problem Writing Large TSN Values to Data and Snap Pages 96

FROM (((C_AVG T0
 INNER JOIN C_SBT T1 ON T0.C_COD_LIG = T1.C_COD_LIG)
 INNER JOIN C_SGU T2 ON T1.NSEG = T2.NSEG)
 INNER JOIN C_ETU T3 ON T3.NITIN = T2.NITIN)
 INNER JOIN C_ITI T4 ON T4.NITIN = T3.NITIN
WHERE
 T3.IDAT = 99999 AND T0.NUMAG = '999 XXX' AND
 −− BLOC 1:
 (T0.DEBU = T0.PFIN AND T0.DEBU >= T1.DEBU AND T0.DEBU <= T1.PFIN) AND
 −− BLOC 3:
 ((SELECT COUNT(*)
 FROM (C_BOUC T5 INNER JOIN C_OBST T6 ON T6.ID_OBST = T5.ID_OBST)
 INNER JOIN C_VOBST T7 ON
 T7.ID_OBST = T5.ID_OBST AND T7.CLIG = T5.CLIG AND
 T7.NOMV = T5.NOMV
 WHERE T5.NUMAG = T0.NUMAG AND T5.ACT = 1 AND T6.ACT = 1 AND
 −− BLOC 3a:
 (T6.DEBU = T6.PFIN AND T6.DEBU >= T1.DEBU AND T6.DEBU <= T1.PFIN) AND
 −− BLOC 3b:
 −− Segment A OR
 ((T2.PSEG = 2 AND T2.SENS = 0 AND T6.DEBU >= T4.FITI) OR
 −− Segment B
 (T2.PSEG = 3 AND T6.DEBU <> T6.PFIN AND T2.SENS = 1 AND
 T6.PFIN > T4.DITI AND T6.DEBU < T4.FITI)) AND
 −− BLOC 3c:
 (T3.UTLP = 1 AND
 ((T2.SENS = 0 AND T7.SCIR = 7) OR ! T2_SENS = 0 is shared
 (T2.SENS = 1 AND T7.SCIR IN (1,3, 8)))) ! T2_SENS = 1 is shared
) > 0 −− count > 0
);
 T2.NSEG T2.SENS
 2181 0
 2181 0
 2181 0
3 rows selected

There is no workaround for this problem.

The key parts of this query which contributed to the situation leading to the error are these:

The main query is an inner join of five tables, with a WHERE clause containing a COUNT sub−query
of 3 tables inner joined.

1.

The sub−query contains the complex expression with AND and OR predicates.2.
Some of the operands inside the last OR predicates are shared by the previous OR predicates.3.

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.1.5 Query With Shared OR Predicates Returns Wrong
Result

Bug 12632105

A customer demonstrates, using the following simple reproducer, that this query returns wrong results.

create database filename testdb
create table tab1 (
 col1 bigint, col2 integer, col3 tinyint, col4 tinyint);

Oracle® Rdb for OpenVMS

4.1.5 Query With Shared OR Predicates Returns Wrong Result 97

create table tab2 (col1 bigint);
insert into tab1 values (1000000,900000,11,2);
commit;

The following query should return no rows but it returns one row.

SELECT col2, col3, col4
 from TAB1 T1 where
 col3 in (15,13,11)
 and
 (
 (col3 = 15 and
 ((col4 = 6) or
 (col4 = 2 and
 exists (select * from TAB2 T2
 where T1.col1 = T2.col1)
)
)
)
 or
 (col2 between 1000000 and 1500000 and
 ((col3 = 11 and col4 = 2) or
 (col3 = 13 and col4 = 1)
)
)
)
 and col1 = 1000000;
Tables:
 0 = TAB1
 1 = TAB2
Cross block of 2 entries Q1
 Cross block entry 1
 Conjunct: (0.COL3 = 15) OR (0.COL3 = 13) OR (0.COL3 = 11)
 Conjunct: 0.COL1 = 1000000
 Get Retrieval sequentially of relation 0:TAB1
 Cross block entry 2
 Aggregate−F1: 0:COUNT−ANY (<subselect>) Q2
 Conjunct: 0.COL1 = 1.COL1
 Get Retrieval sequentially of relation 1:TAB2
 COL2 COL3 COL4
 900000 11 2
1 row selected

However, moving "col3 in (15,13,11)" to the end returns the correct result, as seen in the following example.

SELECT col2, col3, col4
 from TAB1 T1 where
 (
 (col3 = 15 and
 ((col4 = 6) or
 (col4 = 2 and
 exists (select * from TAB2 T2
 where T1.col1 = T2.col1)
)
)
)
 or
 (col2 between 1000000 and 1500000 and
 ((col3 = 11 and col4 = 2) or
 (col3 = 13 and col4 = 1)
)

Oracle® Rdb for OpenVMS

4.1.5 Query With Shared OR Predicates Returns Wrong Result 98

)
)
 and col1 = 1000000
 and col3 in (15,13,11);
Tables:
 0 = TAB1
 1 = TAB2
Cross block of 2 entries Q1
 Cross block entry 1
 Conjunct: 0.COL1 = 1000000
 Conjunct: (0.COL3 = 15) OR (0.COL3 = 13) OR (0.COL3 = 11)
 Get Retrieval sequentially of relation 0:TAB1
 Cross block entry 2

 Conjunct: (((0.COL3 = 15) AND ((0.COL4 = 6) OR ((0.COL4 = 2) AND (<agg0> <>
 0)))) OR ((0.COL2 >= 1000000) AND (0.COL2 <= 1500000) AND (((
 0.COL3 = 11) AND (0.COL4 = 2)) OR ((0.COL3 = 13) AND (0.COL4 = 1))
))) AND ((0.COL3 = 15) OR (0.COL3 = 13) OR (0.COL3 = 11))
 Aggregate−F1: 0:COUNT−ANY (<subselect>) Q2
 Conjunct: (0.COL3 = 15) OR (0.COL3 = 13) OR (0.COL3 = 11)
 Conjunct: 0.COL1 = 1.COL1
 Get Retrieval sequentially of relation 1:TAB2
0 rows selected

The key parts of this query which contributed to the situation leading to the error are these:

The query contains an expression with nested AND and OR predicates.1.
Some of the operands inside the OR predicates are shared (the same expression).2.
The placing of one of the OR predicates as part of the AND operation changes the outcome.3.

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.1.6 Query With LSS, LEQ and NOT NULL Predicate
Returns Wrong Result on Itanium System

Bug 12794427

The customer demonstrates, using the following simple reproducer, that a query with LSS, LEQ and NOT
NULL returns wrong results.

create table T1(f1 char(8), f2 char(4), f3 integer);

insert into T1 values ('03901605' , '1',1);
insert into T1 values ('03901605' , ' ',2);
insert into T1 values ('03901605' , ' ',3);
insert into T1 values ('03901605' , x'01000000',4);
insert into T1 values ('03901605' ,null,1);

creat index T1_idx1 on T1(f1,f2);

select f1, f2, translate (f2 using rdb$hex), f3 from T1;
 F1 F2 F3
 03901605 01000000 4
 03901605 20202020 2
 03901605 20202020 3
 03901605 1 31202020 1
 03901605 NULL NULL 1

Oracle® Rdb for OpenVMS

4.1.6 Query With LSS, LEQ and NOT NULL Predicate Returns Wrong Result on Itanium System 99

5 rows selected

! should find 4 rows
select f1, f2, translate (f2 using rdb$hex), f3 from T1
where f1 = '03901605' and f2 is not null;
 F1 F2 F3
 03901605 20202020 2
 03901605 20202020 3
 03901605 1 31202020 1
3 rows selected

! should find 1 row
select f1, f2, translate (f2 using rdb$hex), f3 from T1
where f1 = '03901605' and f2 < '';
0 rows selected

! should find 3 rows
select f1, f2, translate (f2 using rdb$hex), f3 from T1
where f1 = '03901605' and f2 <= '';
 F1 F2 F3
 03901605 20202020 2
 03901605 20202020 3
2 rows selected

!should find 1 row
select f1, f2, translate (f2 using rdb$hex), f3 from T1
where f1 = '03901605' and f2 < x'20';
0 rows selected

!should find 3 rows
select f1, f2, translate (f2 using rdb$hex), f3 from T1
where f1 = '03901605' and f2 <= x'20';
 F1 F2 F3
 03901605 20202020 2
 03901605 20202020 3
2 rows selected

!should find 1 row
select f1, f2, translate (f2 using rdb$hex), f3 from T1
where f1 = '03901605' and f2 <= x'01000000';
0 rows selected

!should find 1 row
select f1, f2, translate (f2 using rdb$hex), f3 from T1
where f1 = '03901605' and f2 < x'01';
0 rows selected

!should find 1 row
select f1, f2, translate (f2 using rdb$hex), f3 from T1
where f1 = '03901605' and f2 <= x'01';
0 rows selected

The problem occurs when the values of the data are less than or equal to a space character.

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.1.7 SQLSRV−E−PWDEXPIRED Error Restored

Bugs 11831591 and 13039749

Oracle® Rdb for OpenVMS

4.1.7 SQLSRV−E−PWDEXPIRED Error Restored 100

In Oracle SQL/Services releases prior to 7.3.0.3, if a user account's password lifetime was set, an attempt to
connect after the password expired got the SQLSRV−E−PWDEXPIRED error. When intrusion detection was
added in Release 7.3.0.3 of SQL/Services, this error changed to SQLSRV−F−GETACCINF. Therefore,
applications were unable to trap expired/lifetime exceeded password errors in order to prompt the user for a
new password.

An account's password will expire if the account's /PWDLIFETIME or /EXPIRATION is set and the current
date/time is later than the set date/time.

SQLSRV−E−PWDEXPIRED is also returned if either of the PWD_EXPIRED or PWD2_EXPIRED flags are
set in the system UAF file.

A new Oracle SQL/Services Kit is NOT required to correct this problem. This problem has been corrected in
Oracle Rdb Release 7.2.5.1.

4.1.8 Incorrect Results on IA64 using Partitioned
Descending Index

Bug 6129797

Starting with Oracle Rdb Release 7.2.4, it was possible for some queries using partitioned indexes with
segments of mixed ascending and descending order to return incorrect results on IA64 systems effected by
this problem.

The following examples show two problems when using partitioned indexes with segments of mixed
ascending and descending order:

create database file foo
 create storage area fooa
 create storage area foob;

create table mesa (id integer, m4 char (1), m5 integer);
create table rasa (id integer, r4 char (1), r5 integer);

insert into mesa (id, m4, m5) values (1, 'm', 1);
insert into rasa (id, r4, r5) values (1, 'm', 1);

create index x4 on mesa (id asc , m4 asc) ;

create index y4 on rasa (id asc , r4 desc)
 store using (id, r4)
 in fooa with limit of (1, 'g')
 otherwise in foob ;
commit;

! the following query returns correctly 3 rows on Alpha but 1 row on IA64:
SQL> sh version
Current version of SQL is: Oracle Rdb SQL X7.2−00
Underlying versions are:
 Database with filename foo
 Oracle Rdb X7.2−00
 Rdb/Dispatch X7.2−01 (OpenVMS Alpha)

SQL> select m.id, m.m4, r.r4 from
 mesa m inner join rasa r on (m.id = r.id);

Oracle® Rdb for OpenVMS

4.1.8 Incorrect Results on IA64 using Partitioned Descending Index 101

 1 m m
 1 m k
 1 m e
3 rows selected

SQL> sh version
Current version of SQL is: Oracle Rdb SQL X7.2−00
Underlying versions are:
 Database with filename foo
 Oracle Rdb X7.2−00
 Rdb/Dispatch X7.2−01 (OpenVMS IA64)

SQL> select m.id, m.m4, r.r4 from mesa m inner join rasa r on (m.id = r.id);
 1 m e
1 row selected

This problem is related to the construction and comparison of the descending key values during the index
partitions.

The problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.1.9 Unexpected Failure When Identity Sequence is Not
Granted Access

Bug 13248799

Oracle Rdb creates a special sequence when the IDENTITY clause is used in a CREATE TABLE or ALTER
TABLE statement. However, subsequent use of the GRANT statement on the table would not modify the
protections on the matching identity sequence. In such cases, the INSERT statement might fail even when the
user was granted INSERT privilege on the table.

The following example shows the reported error. As you can see, it is confusing since the user clearly has
INSERT privilege on the table.

SQL> show privileges on table T;
Privileges on Table T
 (IDENTIFIER=[RDB,TESTER],ACCESS=SELECT+INSERT)
SQL>
SQL> insert into T default values;
%RDB−E−NO_PRIV, privilege denied by database facility
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.1. The GRANT statement will now propagate
the SELECT privilege to the identity sequence when INSERT is granted on the table. Likewise, a REVOKE
statement will remove the SELECT privilege from the identity sequence when INSERT is revoked from the
table.

4.1.10 LIMIT TO/ORDER BY Query With OR Predicate
Returns Wrong Result

Bug 13554836

Oracle® Rdb for OpenVMS

4.1.9 Unexpected Failure When Identity Sequence is Not Granted Access 102

The customer demonstrates, using the following simple reproducer, that the LIMIT TO/ORDER BY query
with OR predicate returns the wrong result.

select DFID,TID,TT_ID from DF;
 DFID TID TT_ID
 15307659 313954196 2
 3571816 803166548 1
 18736151 216931932 1
3 rows selected

select * from NT;
 ITEM_IND ITEM_ID USER_ID
 F 3039532 DARMAWANT
 F 3571816 YAPT
 F 18736151 GSHG
 T 15643968 SYSTEM
 T 16610114 SYSTEM
5 rows selected

! The value returned in the column NOTES_IND in the first row should be 'Y'
! instead of 'N'.
!
select
 TT.DFID
 ,case
 when
 (exists
 (select
 *
 from
 NT N
 where
 ((N.ITEM_ID = TT.DFID and N.ITEM_IND = 'F')
 or (N.ITEM_ID = TT.TID and N.ITEM_IND = 'T')
 or (N.ITEM_ID = TT.PID and N.ITEM_IND = 'M'))
 and N.USER_ID <> 'SYSTEM'))
 then
 'Y'
 else
 'N'
 end NOTES_IND
from
 (select
 DF.DFID,
 DF.TID,
 DF.PID
 from
 DF DF
) TT
order by
 TT.DFID
limit to 150 rows;
 DFID NOTES_IND
 3571816 N <= this is wrong
 15307659 N
 18736151 Y
3 rows selected

The query works if the LIMIT TO clause is removed, as in the following example.

select

Oracle® Rdb for OpenVMS

4.1.9 Unexpected Failure When Identity Sequence is Not Granted Access 103

 TT.DFID
 ,case
 when
 (exists
 (select
 *
 from
 NT N
 where
 ((N.ITEM_ID = TT.DFID and N.ITEM_IND = 'F')
 or (N.ITEM_ID = TT.TID and N.ITEM_IND = 'T')
 or (N.ITEM_ID = TT.PID and N.ITEM_IND = 'M'))
 and N.USER_ID <> 'SYSTEM'))
 then
 'Y'
 else
 'N'
 end NOTES_IND
from
 (select
 DF.DFID,
 DF.TID,
 DF.PID
 from
 DF DF
) TT
order by
 TT.DFID
!limit to 150 rows <= removing this makes the query work
;
Tables:
 0 = DF
 1 = NT
Sort: 0.DFID(a)
Cross block of 2 entries Q0
 Cross block entry 1
 Merge of 1 entries Q1
 Merge block entry 1 Q2
 Get Retrieval sequentially of relation 0:DF
 Cross block entry 2
 Aggregate−F1: 0:COUNT−ANY (<subselect>) Q3
 Conjunct: (((1.ITEM_ID = 0.DFID) AND (1.ITEM_IND = 'F')) OR (
 (1.ITEM_ID = 0.TID) AND (1.ITEM_IND = 'T')) OR ((
 1.ITEM_ID = 0.PID) AND (1.ITEM_IND = 'M'))) AND (
 1.USER_ID <> 'SYSTEM')
 OR index retrieval Q3
 Conjunct: ((1.ITEM_ID = 0.DFID) AND (1.ITEM_IND = 'F')) OR
 ((1.ITEM_ID = 0.TID) AND (1.ITEM_IND = 'T'))
 OR index retrieval Q3
 Index only retrieval of relation 1:NT
 Index name NT_IDX [2:2]
 Keys: (1.ITEM_IND = 'F') AND (1.ITEM_ID = 0.DFID)
 Conjunct: NOT ((1.ITEM_IND = 'F') AND (1.ITEM_ID = 0.DFID
))
 Index only retrieval of relation 1:NT
 Index name NT_IDX [2:2]
 Keys: (1.ITEM_IND = 'T') AND (1.ITEM_ID = 0.TID)
 Conjunct: NOT (((1.ITEM_IND = 'F') AND (1.ITEM_ID = 0.DFID)
) OR ((1.ITEM_IND = 'T') AND (1.ITEM_ID = 0.TID)))
 Index only retrieval of relation 1:NT
 Index name NT_IDX [2:2]
 Keys: (1.ITEM_IND = 'M') AND (1.ITEM_ID = 0.PID)

Oracle® Rdb for OpenVMS

4.1.9 Unexpected Failure When Identity Sequence is Not Granted Access 104

 DFID NOTES_IND
 3571816 Y <= this is correct
 15307659 N
 18736151 Y
3 rows selected

The problem occurs when the query contains a nested OR predicate in the inner loop of the cross strategy with
ORDER BY followed by LIMIT TO clause.

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

Oracle® Rdb for OpenVMS

4.1.9 Unexpected Failure When Identity Sequence is Not Granted Access 105

4.2 SQL Errors Fixed

4.2.1 THRESHOLDS Clause Not Applied to Default LIST
Storage by CREATE STORAGE MAP Statement

Bug 12664565

In prior releases of Oracle Rdb, the CREATE STORAGE MAP statement did not apply THRESHOLD values
to the default LIST storage area when it was referenced in the storage map definition.

The following example shows this problem. The Partition Information for the lists map does not report any
THRESHOLDS for the default LIST area.

SQL> create storage map LISTS_MAP
cont> store LISTS
cont> in AREA_BLOB_1
cont> (thresholds are (50, 60, 80))
cont> for (BLOB_1.IMAGE)
cont> in AREA_BLOB_DEFAULT
cont> (thresholds are (55, 65, 85));
SQL> commit;
SQL>
SQL> show storage map lists_map
 LISTS_MAP
 For Lists
 Store clause: STORE LISTS
 in AREA_BLOB_1
 (thresholds are (50, 60, 80))
 for (BLOB_1.IMAGE)
 in AREA_BLOB_DEFAULT
 (thresholds are (55, 65, 85))

 Partition information for lists map:
 Partition: (0) SYS_P00059
 Storage Area: AREA_BLOB_1
 Thresholds are (50, 60, 80)
 Partition: (0) SYS_P00001
 Storage Area: AREA_BLOB_DEFAULT
SQL>

The default LIST (or SEGMENTED STRING) area is defined by the CREATE DATABASE statement and is
created at that time without thresholds. Later during CREATE STORAGE MAP, this logical area is reused
without applying the desired THRESHOLDS.

This problem has been corrected in Oracle Rdb Release 7.2.5.1. This logical area is now altered by the
CREATE STORAGE MAP statement to apply the thresholds clause. Note, as with other changes to logical
areas, this action is deferred until COMMIT time.

4.2.2 Some CHARACTER SET Clauses Ignored by IMPORT
DATABASE Statement

4.2 SQL Errors Fixed 106

Bug 12740758

In prior versions of Oracle Rdb, the CHARACTER SET clauses specified on the IMPORT DATABASE
statement were ignored.

With this release, the following clauses are now processed by IMPORT: DEFAULT CHARACTER SET,
NATIONAL CHARACTER SET and IDENTIFIER CHARACTER SET. Their effect is to establish new
values for use by new objects created after the IMPORT statement has completed.

The following example shows the problem. The character sets from the original database are retained after the
IMPORT.

SQL> import database
cont> from ps_export
cont> filename ps2
cont>
cont> default character set ISOLATIN1
cont> national character set UTF8
cont> identifier character set DEC_MCS
cont> ;
SQL> show connection RDB$DEFAULT_CONNECTION
Connection: RDB$DEFAULT_CONNECTION
.
.
.
Alias RDB$DBHANDLE:
 Identifier character set is ASCII
 Default character set is WIN_LATIN1
 National character set is UNICODE
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.2.3 Unexpected Bugcheck From DROP INDEX or ALTER
INDEX Statements

Bug 12823968

In prior releases of Oracle Rdb, it was possible in rare cases for DROP INDEX, ALTER INDEX ...
TRUNCATE PARTITION, ALTER INDEX ... TRUNCATE ALL PARTITIONS, ALTER INDEX ...
REBUILD PARTITION, or ALTER INDEX ... REBUILD ALL PARTITIONS to generate a bugcheck
similar to that shown below.

Exception at 0000000081CAA251 : RDMSHRP721\DIO$FETCH_DBKEY + 000003D1•
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual address=000000000000034C,
PC=0000000081CAA251, PS=00000009

•

Saved PC = 0000000080F34860 : RDMSHRP721\PSII2DESTROYDUPCHAINS + 00000430•
Saved PC = 0000000080F33AF0 : RDMSHRP721\PSII2DESTROYTREE + 000005C0•
Saved PC = 0000000080F33A60 : RDMSHRP721\PSII2DESTROYTREE + 00000530•
Saved PC = 000000008130FF40 : RDMSHRP721\RDMS$$CHANGE_INDEX + 00022F20•

This problem occurs under the following conditions:

Oracle® Rdb for OpenVMS

4.2.3 Unexpected Bugcheck From DROP INDEX or ALTER INDEX Statements 107

More than one index exists for the table.•
Two or more of the indices do not include a STORE IN clause, which means these indices are stored
in the default storage area by default. It also means that the index nodes from those indices will share
a single logical area.

•

The index being operated on is one of the indices without a STORE clause.•
The index being operated on is a SORTED RANKED index with many duplicates, enough that the
compressed bit map must be split across multiple overflow nodes.

•

The NUMBER OF BUFFERS used by the session is too small to contain the full chain of overflow
nodes for a single key. This includes any definition of RDM$BIND_BUFFERS.

•

Under normal circumstances, an index in a UNIFORM logical area is processed by these DROP INDEX and
ALTER INDEX statements using the fast logical area delete feature which does not need to traverse the index
nodes. Therefore, defining the indices with STORE clauses or using a large NUMBER OF BUFFERS for the
database can be used to avoid this problem.

The following example uses SET FLAGS with the INDEX_STATS keyword to display more information
during the ALTER INDEX statement.

SQL> set flags 'stomap_stats,index_stats';
SQL>
SQL> alter index SAMPLE_INDEX_1 TRUNCATE ALL PARTITIONS;
~Ai alter index "SAMPLE_INDEX_1" (hashed=0, ordered=0)
~As locking table "SAMPLE_TABLE" (PR −> PU)
~Ai truncate all partitions
~Ai truncated 0 partitions, skipped 0
~Ai shared larea 80 − must destroy tree
~Ai destroy old index, root=80:59:1
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RDSBUGCHK.DMP;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RDSBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=000000000000034C, PC=FFFFFFFF81CDB220, PS=0000001B
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.2.4 Unexpected Error When Both LIKE and
COMPRESSION Used in CREATE TABLE Statement

Bug 12907930

In prior releases of Oracle Rdb, attempts to use the COMPRESSION clause and the LIKE clause on a
CREATE TABLE or DECLARE LOCAL TEMPORARY TABLE statement caused an exception to be
raised.

The following example shows this error.

SQL> create table OLD_EMPLOYEES
cont> like EMPLOYEES
cont> compression is disabled
cont> ;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−BAD_CODE, corruption in the query string
SQL>
SQL> declare local temporary table module.OLD_EMPLOYEES

Oracle® Rdb for OpenVMS

4.2.4 Unexpected Error When Both LIKE and COMPRESSION Used in CREATE TABLE Statement108

cont> like EMPLOYEES
cont> compression is disabled
cont> ;
%RDMS−E−BAD_CODE, corruption in the query string
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.1. SQL now generates the correct DDL
definition for these combined clauses.

4.2.5 Wrong Results When UNION Mixed With EXCEPT,
MINUS or INTERSECT

In prior releases of Oracle Rdb, it was possible that mixing UNION with EXCEPT, MINUS or INTERSECT
could return wrong results. The EXCEPT, MINUS or INTERSECT were mistakenly transformed to UNION
operators and merged into UNION operations.

The following example should return zero rows but the MINUS is handled incorrectly.

SQL> create table X (a int);
SQL> insert into X values (1);
1 row inserted
SQL>
SQL> select a from x
cont> minus
cont> (select a from x
cont> union distinct
cont> select a from x
cont>)
cont> ;
 A
 1
1 row selected
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.1. Any SQL Module Language or SQL
Precompiler applications that use UNION should be recompiled after this version is installed. Applications
using Dynamic or Interactive SQL will automatically get the corrected behavior upon execution of these
queries.

4.2.6 Unexpected Error When Defining Trigger With INSERT
... DEFAULT VALUES Clause

In prior releases of Oracle Rdb, it was not possible to use the syntax INSERT INTO ... DEFAULT VALUES
as an action in a TRIGGER definition. The syntax was accepted by SQL but the Rdb server rejected the
definition as shown below.

SQL> create trigger c_insert
cont> after insert on C
cont> (trace 'insert into C';
cont> update A set a = a + 1, b = DEFAULT)
cont> for each row
cont>
cont> when (C.a is NULL)
cont> (insert into B default values)

Oracle® Rdb for OpenVMS

4.2.5 Wrong Results When UNION Mixed With EXCEPT, MINUS or INTERSECT 109

cont> for each row
cont>
cont> when (C.a = FF (C.a))
cont> (signal 'RR001' ('Unexpected value'))
cont> for each row
cont> ;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−BAD_CODE, corruption in the query string
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.1. Oracle Rdb now correctly processes this
format for the INSERT statement when present in a trigger definition.

4.2.7 Unexpected Bugcheck When Declaring a Local
Temporary Table With the Same Name as a System Table

Bug 12907930

In prior versions of Oracle Rdb, it was not permitted to declare a local temporary table with the same name as
a system table. In this example, the name RDB$STORAGE_MAPS is a system table which the customer
wanted to load into a scratch table and perform comparisons across different databases. The unfortunate side
effect is that the table metadata is unloaded as part of the error processing.

The following example shows the resulting error (and bugcheck dump) when the expected system table
metadata is missing.

SQL> declare local temporary table module.RDB$STORAGE_MAPS
cont> like RDBVMS$STORAGE_MAPS
cont> on commit preserve rows;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−VIEW_NO_ANA, views cannot be analyzed
SQL>
SQL> create view VIEW_RDB$STORAGE_MAPS AS SELECT * FROM RDB$STORAGE_MAPS;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RDSBUGCHK.DMP;
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.1. Oracle Rdb now uses the context for the name
to correctly cleanup the in−memory metadata.

Oracle® Rdb for OpenVMS

4.2.7 Unexpected Bugcheck When Declaring a Local Temporary Table With the Same Name as a System Table110

4.3 RMU Errors Fixed

4.3.1 RMU Extract Did Not Propagate Domain Attributes

Bug 12572092

In prior versions of Oracle Rdb, RMU Extract did not propagate domain attributes (default or check
constraint) when the /LANGUAGE=ANSI_SQL or /OPTION=NODOMAIN qualifiers were used.

The following example shows this.

SQL> create domain COL1_DOM
cont> char
cont> default NULL
cont> check ((value is null
cont> or substring(value from 1 for 1) between 'A' and 'Z'))
cont> not deferrable
cont> ;
SQL>
SQL> create table TBL1
cont> (col1 COL1_DOM
cont>)
cont> ;

Here is the resulting extracted table when /OPTION=NODOMAIN is used. Note that neither the DEFAULT
value for the column nor the CHECK constraint is extracted from the domain.

create table TBL1 (
 COL1
 CHAR (1));

This problem has been corrected in Oracle Rdb Release 7.2.5.1. RMU Extract now propagates the DEFAULT
defined for the domain to each referencing column when extracted using /LANGUAGE=ANSI_SQL or
/OPTION=NODOMAIN qualifiers.

RMU Extract now generates a local (column) CHECK constraint with a name derived from the source
domain.

create table TBL1 (
 COL1
 CHAR (1)
 default NULL
 constraint COL1_DOM_1
 check(((COL1 is null)
 or SUBSTRING(COL1 from 1 for 1) between 'A' and 'Z'))
 not deferrable);

Note

The option Defer_Constraints of the /OPTIONS qualifier is not currently applied to the
extracted domain constraint.

4.3 RMU Errors Fixed 111

4.3.2 RMU/RECOVER Consistency Bugcheck When
Fetching a SPAM Page

Bug 12639352

During the RMU/RECOVER of an Oracle Rdb database, if, when an AIJBL$K_DELA record in an AIJ file
was processd to delete a logical area, no preceeding AIJ record in that AIJ file had previously readied the
uniform storage area containing that logical area in Update permission mode and the storage area was not
marked as corrupt, a consistency bugcheck would occur when fetching the SPAM page for that logical area.
When this happened, the resulting RMUBUGCHK.DMP would show the following stack trace. (The
following stack trace is for Oracle Rdb Release 7.2.5.0, but this problem could occur in earlier versions of
Oracle Rdb as well.)

***** Exception at 0000000080BA0D00 : RMU72\PIO$FETCH + 000005B0
%COSI−F−BUGCHECK, internal consistency failure
Saved PC = 00000000807F5FC0 : RMU72\DIORE$DELA + 000008C0
Saved PC = 00000000807EDBD0 : RMU72\DIO$RE_DO + 00000530
Saved PC = 0000000080B38050 : RMU72\KUTREC$APPLY_AIJBL + 00000B40
Saved PC = 0000000080B2C060 : RMU72\KUTREC$DO_C_AIJBUF + 00001AF0
Saved PC = 0000000080B2A300 : RMU72\KUTREC$DO_COMMIT_QUE + 00000160
Saved PC = 0000000080B3A2B0 : RMU72\KUTREC$NORMAL_ROLLFORWARD + 000003E0
Saved PC = 0000000080B23BB0 : RMU72\KUTREC$RECOVER_JOURNAL + 00003FD0
Saved PC = 0000000080B1E730 : RMU72\KUTREC$RECOVER + 00001E30
Saved PC = 00000000805D0540 : RMU72\RMUREC$RECOVER_ACTION + 00001910
Saved PC = 00000000805CEBA0 : RMU72\RMUCLI$RECOVER + 000009D0
Saved PC = 0000000080332530 : RMU72\RMU_DISPATCH + 00001C30
Saved PC = 0000000080330150 : RMU72\RMU_STARTUP + 00000920
Saved PC = 0000000080000C20 : RMU72\ELF$TFRADR + 00000050
Saved PC = FFFFFFFF844CEE80 : Image PTHREAD$RTL + 0004AE80
Saved PC = FFFFFFFF844846C0 : Image PTHREAD$RTL + 000006C0
Saved PC = 000000007ADBF040 : Image DCL + 0006D040

This problem has been fixed. Now the storage area, which contains the SPAM page for the logical area being
deleted, will be readied in Update mode if it has not previously been readied during the RMU/RECOVER.
There is no workaround for this problem.

The following example shows the problem. First the database is restored. Then during the RMU/RECOVER
an internal consistency failure occurs, the recover operation fails, and an RMUBUGCHK.DMP is created.

$ RMU/RESTORE/DIR=DEVICE:[DIRECTORY]/NOCDD [−]DB_NAME.RBF
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
%RMU−W−USERECCOM, Use the RMU Recover command. The journals are not available.
$ RMU/RECOVER/ROOT=DEVICE:[DIRECTORY]DB_NAME.RDB/TRACE [−]DB_NAME_01.AIJ
%RMU−I−LOGRECDB, recovering database file DEVICE:[DIRECTORY]DB_NAME.RDB;1
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005673 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005674 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005675 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005676 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005677 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005678 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005679 committed
%COSI−F−BUGCHECK, internal consistency failure
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file DEVICE:[DIRECTORY]RMUBUGCHK.DMP;

Oracle® Rdb for OpenVMS

4.3.2 RMU/RECOVER Consistency Bugcheck When Fetching a SPAM Page 112

The following example shows that this problem has been fixed. Following the RMU/RESTORE of the
database, the RMU/RECOVER operation succeeds and a success message is output.

$ RMU/RESTORE/DIR=DEVICE:[DIRECTORY]/NOCDD [−]DB_NAME.RBF
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
%RMU−W−USERECCOM, Use the RMU Recover command. The journals are not available.
$ RMU/RECOVER/ROOT=DEVICE:[DIRECTORY]DB_NAME.RDB/TRACE [−]DB_NAME_01.AIJ
%RMU−I−LOGRECDB, recovering database file DEVICE:[DIRECTORY]DB_NAME.RDB;1
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005673 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005674 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005675 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005676 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005677 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005678 committed
%RMU−I−LOGRECSTAT, transaction with TSN 0:16005679 committed
%RMU−I−AIJONEDONE, AIJ file sequence 133 roll−forward operations completed
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed
%RMU−I−AIJSUCCES, database recovery completed successfully
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 134
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.3.3 Problems If a Full RMU/BACKUP Was Not Done After
RMU/MOVE_AREA

Bug 13070493

Problems occurred if a full database backup of an Oracle Rdb database was not done following an
RMU/MOVE_AREA command. If a full database backup that was done previous to the RMU/MOVE_AREA
command was later restored, followed by the restore of an incremental database backup done after the
RMU/MOVE_AREA command, changes to the database root file made by the RMU/MOVE_AREA
command were lost. This would undo the results of the RMU/MOVE_AREA command and sometimes cause
database corruption. To prevent this, the following error will now be returned if the next online or offline
database backup command executed following an RMU/MOVE_AREA command will not produce a full
database backup, and the backup will not be allowed.

$ rmu/backup/nolog/incremental mf_personnel.rdb mfp.rbf
%RMU−F−NOFULLBCK, no full backup of this database exists
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 11−OCT−2011
12:02:18.08

If an RMU/DUMP/HEADER command is executed following an RMU/MOVE_AREA command, and a full
database backup has not yet been executed, the following warning line will appear in the "Database Backup"
section of the dump.

 Database Backup...

 − Incremental backup not allowed until full backup

Once a full online or offline database backup is executed following the RMU/MOVE_AREA command,
incremental database backups can be executed and an RMU/DUMP HEADER command will no longer show

Oracle® Rdb for OpenVMS

4.3.3 Problems If a Full RMU/BACKUP Was Not Done After RMU/MOVE_AREA 113

the above warning line in the "Database Backup" section of the dump. Note that Rdb already requires a full
database backup to be made following certain changes made to the database root such as adding and reserving
storage areas and defining new nodes and users. These existing cases also cause the incremental backup to fail
with the same error message and the above warning line to appear in the output of the
RMU/DUMP/HEADER command until a full database backup is executed.

The following example shows the problem. The full database backup is done before the move of the
DEPARTMENTS storage area to the new directory. The incremental database backup is done after the move.
When the full restore is done, the database root is restored as it was before the move was done. This does not
corrupt the database in this particular case but it does undo the move of the DEPARTMENTS storage area to
the new directory.

$ rmu/backup/online/nolog mf_personnel mf_personnel_full
$ SQL
attach 'filename mf_personnel';
insert into departments values ('1234','Testing A','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1235','Testing B','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1236','Testing C','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1237','Testing D','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1238','Testing E','11111',20000,20000);
1 row inserted
commit;
exit;
$ RMU/MOVE_AREA/DIRECTORY=[.move_db]/NOLOG −
 device:[directory]mf_personnel.rdb −
 DEPARTMENTS
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery
%RMU−I−COMPLETED, MOVE_AREA operation completed at 11−OCT−2011 12:07:15.40
$ dir departments.*
%DIRECT−W−NOFILES, no files found
$ dir [.move_db]departments.*

Directory DEVICE:[DIRECTORY.MOVE_DB]

DEPARTMENTS.RDA;1 DEPARTMENTS.SNP;1

Total of 2 files.
$ rmu/verify/nolog mf_personnel
$ SQL
attach 'filename mf_personnel';
insert into departments values ('1231','Testing F','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1230','Testing G','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1232','Testing H','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1233','Testing I','11111',20000,20000);
1 row inserted
commit;

Oracle® Rdb for OpenVMS

4.3.3 Problems If a Full RMU/BACKUP Was Not Done After RMU/MOVE_AREA 114

insert into departments values ('1240','Testing J','11111',20000,20000);
1 row inserted
commit;
exit;
$ rmu/backup/online/nolog/incremental mf_personnel mf_personnel_inc
$ SQL
drop database filename 'mf_personnel';
exit;
$ rmu/restore/norecover/nocdd/nolog mf_personnel_full
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
$ rmu/restore/incremental/nocdd/norecover/nolog mf_personnel_inc
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1,
 restore incrementally? [N]:Y
$ dir departments.*

Directory DEVICE:[DIRECTORY]

DEPARTMENTS.RDA;1 DEPARTMENTS.SNP;1

Total of 2 files.
$ dir [.move_db]departments.*
%DIRECT−W−NOFILES, no files found
$ rmu/verify/nolog mf_personnel

The following example shows the new behavior. The full database backup is done before the move of the
DEPARTMENTS storage area to the new directory. When the incremental database backup is attempted after
the move, the incremental backup is aborted and an error that states that a full backup should have been done
after the RMU/MOVE is output.

$ rmu/backup/online/nolog mf_personnel mf_personnel_full
$ SQL
attach 'filename mf_personnel';
insert into departments values ('1234','Testing A','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1235','Testing B','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1236','Testing C','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1237','Testing D','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1238','Testing E','11111',20000,20000);
1 row inserted
commit;
exit;
$ RMU/MOVE_AREA/DIRECTORY=[.move_db]/NOLOG −
 device:[directory]mf_personnel.rdb −
 DEPARTMENTS
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery
%RMU−I−COMPLETED, MOVE_AREA operation completed at 11−OCT−2011 12:09:15.40
$ dir departments.*
%DIRECT−W−NOFILES, no files found
$ dir [.move_db]departments.*

Directory DEVICE:[DIRECTORY.MOVE_DB]

DEPARTMENTS.RDA;1 DEPARTMENTS.SNP;1

Oracle® Rdb for OpenVMS

4.3.3 Problems If a Full RMU/BACKUP Was Not Done After RMU/MOVE_AREA 115

Total of 2 files.
$ rmu/verify/nolog mf_personnel
$ SQL
attach 'filename mf_personnel';
insert into departments values ('1231','Testing F','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1230','Testing G','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1232','Testing H','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1233','Testing I','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1240','Testing J','11111',20000,20000);
1 row inserted
commit;
exit;
$ rmu/backup/online/nolog/incremental mf_personnel mf_personnel_inc
%RMU−F−NOFULLBCK, no full backup of this database exists
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 11−OCT−2011
12:30:18.08

The following example shows that no problems occur if the full database backup is done after the database
move instead of before the database move.

$ SQL
attach 'filename mf_personnel';
insert into departments values ('1234','Testing A','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1235','Testing B','11111',20000,20000);
1 row inserted
`insert into departments values ('1236','Testing C','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1237','Testing D','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1238','Testing E','11111',20000,20000);
1 row inserted
commit;
exit;
$ RMU/MOVE_AREA/DIRECTORY=[.move_db]/NOLOG −
 device:[directory]mf_personnel.rdb −
 DEPARTMENTS
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery
%RMU−I−COMPLETED, MOVE_AREA operation completed at 11−OCT−2011 12:40:15.40
$ dir departments.*
%DIRECT−W−NOFILES, no files found
$ dir [.move_db]departments.*

Directory DEVICE:[DIRECTORY.MOVE_DB]

DEPARTMENTS.RDA;1 DEPARTMENTS.SNP;1

Total of 2 files.
$ rmu/verify/nolog mf_personnel

Oracle® Rdb for OpenVMS

4.3.3 Problems If a Full RMU/BACKUP Was Not Done After RMU/MOVE_AREA 116

$ rmu/backup/online/nolog mf_personnel mf_personnel_full
$ SQL
attach 'filename mf_personnel';
insert into departments values ('1231','Testing F','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1230','Testing G','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1232','Testing H','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1233','Testing I','11111',20000,20000);
1 row inserted
commit;
insert into departments values ('1240','Testing J','11111',20000,20000);
1 row inserted
commit;
exit;
$ rmu/backup/online/nolog/incremental mf_personnel mf_personnel_inc
$ SQL
drop database filename 'mf_personnel';
exit;
$ rmu/restore/norecover/nocdd/nolog mf_personnel_full
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
$ rmu/restore/incremental/nocdd/norecover/nolog mf_personnel_inc
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1,
 restore incrementally? [N]:Y
$ dir departments.*
%DIRECT−W−NOFILES, no files found
$ dir [.move_db]departments.*

Directory DEVICE:[DIRECTORY.MOVE_DB]

DEPARTMENTS.RDA;1 DEPARTMENTS.SNP;1

Total of 2 files.
$ rmu/verify/nolog mf_personnel

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.3.4 Parallel Incremental Backup RMU−F−NOFULLBCK
Error Handling Problem

Bug 13241902

Starting with Oracle Rdb Release 7.2.5.0, the "RMU−F−NOFULLBCK" error is output if certain changes
have been made to a database, such as adding a new storage area, that require a full database backup and the
user attempts to execute an incremental database backup before doing a full database backup. Due to an error
handling problem, for a parallel incremental backup the error message "SYSTEM−E−QUOTA" was put out in
place of the "RMU−F−NOFULLBCK" error. This has been corrected and the correct
"RMU−F−NOFULLBCK" error will now be output. This was only a problem with parallel incremental
database backups. Non parallel database backups correctly put out the "RMU−F−NOFULLBCK" error. This
was not a process quota problem but an error handling problem.

Oracle® Rdb for OpenVMS

4.3.4 Parallel Incremental Backup RMU−F−NOFULLBCK Error Handling Problem 117

The following example shows the problem. An MF_PERSONNEL database is created and a new storage area
is added to the database. When a parallel incremental database backup is done and no full database backup has
been done since the new storage area was added to the database, an incorrect "SYSTEM−E−QUOTA"
message is output instead of a "RMU−F−NOFULLBCK" error.

$ @sql$sample:personnel sql m nocdd "" []
$ SQL
alter database file mf_personnel
reserve 3 storage areas;
alter data file mf_personnel
add storage area n3;
exit
$ RMU/BACKUP/PARALLEL=(EXEC=2) −
/LIST_PLAN=(TEST.PLAN)/NOEXECUTE/INCLUDE=(RDB$SYSTEM, −
EMPIDS_LOW, EMPIDS_MID, EMPIDS_OVER, SALARY_HISTORY, EMP_INFO, −
DEPARTMENTS, JOBS, RESUMES, RESUME_LISTS, −
N3) −
/noexec −
/incremental −
/CHECKSUM_VERIFICATION −
/DISK_file −
MF_PERSONNEL dev:[current_dir.BACKUP_DIR]back,dev:[current_dir.BACKUP_DIR]
$ rmu /backup /plan test.plan
%SYSTEM−E−EXQUOTA, process quota exceeded
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 2−NOV−2011 22:03:39.15

The following example shows that this problem is now fixed. An MF_PERSONNEL database is created and a
new storage area is added to the database. When a parallel incremental database backup is done and no full
database backup has been done since the new storage area was added to the database, the correct
"RMU−F−NOFULLBCK" error is output.

$ @sql$sample:personnel sql m nocdd "" []
$ SQL
alter database file mf_personnel
reserve 3 storage areas;
alter data file mf_personnel
add storage area n3;
exit
$ RMU/BACKUP/PARALLEL=(EXEC=2) −
/LIST_PLAN=(TEST.PLAN)/NOEXECUTE/INCLUDE=(RDB$SYSTEM, −
EMPIDS_LOW, EMPIDS_MID, EMPIDS_OVER, SALARY_HISTORY, EMP_INFO, −
DEPARTMENTS, JOBS, RESUMES, RESUME_LISTS, −
N3) −
/noexec −
/incremental −
/CHECKSUM_VERIFICATION −
/DISK_file −
MF_PERSONNEL dev:[current_dir.BACKUP_DIR]back,dev:[current_dir.BACKUP_DIR]
$ rmu /backup /plan test.plan
%RMU−F−NOFULLBCK, no full backup of this database exists
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 2−NOV−2011 22:10:20.10

To avoid getting an error, execute a full database backup after making structural changes to the database and
then execute an incremental database backup. To get the correct RMU−F−NOFULLBCK error, execute a non
parallel incremental database backup.

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

Oracle® Rdb for OpenVMS

4.3.4 Parallel Incremental Backup RMU−F−NOFULLBCK Error Handling Problem 118

4.3.5 Problem with RMU/REPAIR/INIT=TSNS When TSNs
Exceed 4,294,967,295

A problem has been discovered when using the RMU/REPAIR/INIT=TSNS command to initialize
TRANSACTION SEQUENCE NUMBERS (TSNs) when the values are greater than 4,294,967,295. No error
is returned by RMU, however any such TSN value stored on data or snapshot pages will not be initialized
correctly. The result is that the TSN values on the database page will contain a value which is inconsistent
with TSNs stored in the database root structures. TSNs contained in these database root structures are
initialized correctly.

TSNs are used by the database engine for a variety of purposes. If the values on the database pages are
incorrect or inconsistent, this could cause read−only transactions (or online backups) to determine that the
wrong version of a record is visible. Also, an incorrect TSN could inhibit the reuse of snapshot pages, causing
snapshot files to grow.

This problem was introduced in Oracle Rdb V7.0−000 and has now been fixed in Oracle Rdb Release 7.2.5.1.
RMU/REPAIR/INIT=TSNS will now correctly initialize TSNs of any value. If you believe that you've been
subject to this problem when using RMU/REPAIR, you should re−execute the RMU command after
upgrading to this version.

4.3.6 Incorrect RMU/BACKUP/AFTER Truncate AIJ File Error
Handling

Bug 13106530

When the Oracle Rdb RMU/BACKUP/AFTER command is finished backing up a single extensible After
Image Journal (AIJ) file, it truncates the AIJ file to the beginning so that the AIJ file no longer contains the
database transaction data written to the backup file and new data written to the AIJ file will start at the
begining of the truncated AIJ file. During the database backup, transaction data can continue to be added to
the extensible AIJ file before and after the truncation operation.

If a non−Rdb process accesses the extensible AIJ file during the RMU/BACKUP/AFTER truncation
operation, a file access conflict can occur which will cause the AIJ backup to be aborted. There was an
RMU/BACKUP/AFTER error handling problem that caused a loss of some of the transaction data being
written to the AIJ file during and after the AIJ backup if a file access conflict occurred during the AIJ file
truncation operation which caused the backup to be aborted. When the RMU/BACKUP/AFTER command
was repeated, RMU/BACKUP/AFTER would detect at the start that the AIJ truncation operation had failed
during the previous AIJ backup and immediately repeat the truncation operation. However, even though this
time the truncation operation succeeded, the truncation operation was not done at the correct point and
transaction data that should have been backed up was lost. This caused loss of transaction data when an
RMU/RECOVER of the database was later done using the backed up AIJ files.

This problem has been fixed and now no loss of data will occur if the RMU/BACKUP/AFTER of an
extensible AIJ file fails during the AIJ file truncation operation and the RMU/BACKUP/AFTER of the AIJ
file is repeated once the file access conflict has been resolved or has ended. If the file truncation operation
fails, it will be repeated at fixed intervals for a fixed period of time. If any of these repeated truncation
operations succeeds, the AIJ backup will continue without error. If the file access conflict is of a longer
duration, the RMU/BACKUP/AFTER will be aborted with a fatal file access conflict error and the invalid AIJ
backup file will be deleted. Then, if the file access conflict is resolved or ends and the

Oracle® Rdb for OpenVMS

4.3.5 Problem with RMU/REPAIR/INIT=TSNS When TSNs Exceed 4,294,967,295 119

RMU/BACKUP/AFTER command is repeated, a valid AIJ backup file will be created and when an
RMU/RECOVER of the database is done no transaction data will be lost.

The following example shows the problem. During the first backup of the single extensible AIJ file, a file
access conflict occurs on the AIJ file when the AIJ file is being truncated and the backup operation is aborted.
When the file access conflict has been resolved or has ended and the AIJ backup is repeated,
RMU/BACKUP/AFTER detects the truncation failure on the previous AIJ backup and repeats the AIJ file
truncation. Even though this time the AIJ file truncation succeeds, the %RMU−I−EMPTYAIJ informational
message shows that the truncation has not been done correctly and transaction data contained in the AIJ file
has been lost.

$ RMU/BACKUP/AFTER/NOQUIET/LOG TESTDB ""
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 0
%RMU−I−LOGBCKAIJ, backing up after−image journal AIJ_1 at 05:28:23.11
%RMU−I−LOGCREBCK, created backup file
 DEVICE:[DIRECTORY]AIJ_1_BCK0_18102011.AIJ;1
%RMU−I−LOGAIJBCK, backed up 3 committed transactions at 05:28:50.92
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 1
%RMU−I−AIJBCKSTOP, backup of after−image journal AIJ_1 did not complete
%RMU−I−OPERNOTIFY, system operator notification: AIJ manual backup
 operation failed
%RMU−F−FILACCERR, error truncating file
−SYSTEM−W−ACCONFLICT, file access conflict
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 18−OCT−2011 05:28:50.93
$
$ RMU/BACKUP/AFTER/NOQUIET/LOG TESTDB ""
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 1
%RMU−I−LOGBCKAIJ, backing up after−image journal AIJ_1 at 05:32:33.21
 the %RMU−W−BADAIJBCK, previous AIJ backup did not complete
%RMU−I−EMPTYAIJ, after−image journal file is empty
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup
 operation completed
%RMU−I−AIJBCKEND, after−image journal backup operation completed successfully

The following example shows that this problem has been fixed. On the first AIJ backup, the file access
conflict occurs during the backup truncation operation but it is of short duration so when the new retry logic
repeats the truncation operation it succeeds and the AIJ backup completes normally without any loss of AIJ
transaction data. On the second AIJ backup, the file access conflict again occurs when the AIJ file is being
truncated but it is of longer duration so the repeated retries of the truncation operation all fail, the backup has
to be aborted and the invalid AIJ backup file is deleted. When the third AIJ backup is done, the file access
conflict does not occur. The third AIJ backup detects that the previous AIJ backup failed but now the backup
file truncation operation is done correctly, the backup operation is successful and a valid AIJ backup file is
created.

$ RMU/BACKUP/AFTER/NOQUIET/LOG TESTDB ""
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation
started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 0
%RMU−I−LOGBCKAIJ, backing up after−image journal AIJ_1 at 09:20:11.12
%RMU−I−LOGCREBCK, created backup file
DEVICE:[DIRECTORY]AIJ_1_BCK0_08122011.AIJ;1
%RMU−I−LOGAIJBCK, backed up 3 committed transactions at 09:20:18.63

Oracle® Rdb for OpenVMS

4.3.5 Problem with RMU/REPAIR/INIT=TSNS When TSNs Exceed 4,294,967,295 120

%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 1
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation
completed
%RMU−I−AIJBCKEND, after−image journal backup operation completed
successfully
%RMU−I−LOGAIJJRN, backed up 1 after−image journal at 09:20:29.03
%RMU−I−LOGAIJBLK, backed up 415615 after−image journal blocks at
09:20:29.03
%RMU−I−LOGAIJBCK, backed up 3 committed transactions at 09:20:29.03
$
$ RMU/BACKUP/AFTER/NOQUIET/LOG TESTDB ""
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation
started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 0
%RMU−I−LOGBCKAIJ, backing up after−image journal AIJ_1 at 09:59:02.02
%RMU−I−LOGCREBCK, created backup file
DEVICE:[DIRECTORY]AIJ_1_BCK0_08122011.AIJ;1
%RMU−I−LOGAIJBCK, backed up 3 committed transactions at 09:59:09.96
%RMU−W−DELBCKFIL, backup aborted, deleting backup file
DEVICE:[DIRECTORY]AIJ_1_BCK0_08122011.AIJ;1
%RMU−I−LOGDELFIL, deleted file
DEVICE:[DIRECTORY]AIJ_1_BCK0_08122011.AIJ;1
%RMU−I−AIJBCKSTOP, backup of after−image journal AIJ_1 did not
complete
%RMU−I−OPERNOTIFY, system operator notification: AIJ manual backup
operation failed
%RMU−F−FILACCERR, error truncating after−image journal file
−SYSTEM−W−ACCONFLICT, file access conflict
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 8−DEC−2011
09:59:10.13
$
$ RMU/BACKUP/AFTER/NOQUIET/LOG TESTDB ""
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation
started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 0
%RMU−I−LOGBCKAIJ, backing up after−image journal AIJ_1 at 10:16:41.55
%RMU−W−BADAIJBCK, previous AIJ backup did not complete
%RMU−I−LOGCREBCK, created backup file
DEVICE:[DIRECTORY]AIJ_1_BCK0_08122011.AIJ;1
%RMU−I−LOGAIJBCK, backed up 4 committed transactions at 10:16:50.44
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 1
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation
completed
%RMU−I−AIJBCKEND, after−image journal backup operation completed
successfully
%RMU−I−LOGAIJJRN, backed up 1 after−image journal at 10:16:51.01
%RMU−I−LOGAIJBLK, backed up 559815 after−image journal blocks at
10:16:51.01
%RMU−I−LOGAIJBCK, backed up 4 committed transactions at 10:16:51.01

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.3.7 Unexpected RMU−W−DATNOTIDX Reported by RMU
Verify for Rdb$WORKLOAD Table

In prior releases of Oracle Rdb, it was possible to have rows inserted into Rdb$WORKLOAD that had no
matching index entries. This may occur if WORKLOAD COLLECTION IS ENABLED and multiple

Oracle® Rdb for OpenVMS

4.3.7 Unexpected RMU−W−DATNOTIDX Reported by RMU Verify for Rdb$WORKLOAD Table 121

duplicate workload rows are inserted by different concurrent processes.

In general, this is harmless to the functioning of the database and the usage of WORKLOAD data. However,
RMU/VERIFY may report errors similar to the following:

%RMU−W−DATNOTIDX, Row in table RDB$WORKLOAD is not in any indexes.
 Logical dbkey is 60:296:24.

This problem has been corrected in Oracle Rdb Release 7.2.5.1. The INSERT of the Rdb$WORKLOAD rows
has been corrected so that this error no longer occurs. However, if these duplicate rows already exist then they
can be removed using the following process.

Save the existing Rdb$WORKLOAD rows.

$ RMU/EXTRACT/ITEM=WORKLOAD/OUT=WRKLD.COM MYDATABASE

1.

Truncate the Rdb$WORKLOAD table.

SQL> attach 'filename MYDATABASE';
SQL> truncate table Rdb$WORKLOAD;
SQL> commit;

Note

This requires Oracle Rdb Release 7.2.5.1 or later which supports using
TRUNCATE TABLE for this system table Rdb$WORKLOAD.

2.

Finally execute the extract .COM file (WRKLD.COM in this example) to re−add the older
definitions.

$ @WRKLD.COM

3.

Oracle® Rdb for OpenVMS

4.3.7 Unexpected RMU−W−DATNOTIDX Reported by RMU Verify for Rdb$WORKLOAD Table 122

4.4 LogMiner Errors Fixed

4.4.1 RMU/UNLOAD/AFTER_JOURNAL
SYSTEM−W−ENDOFFILE Error on a Work File

Bug 12646877

When extracting large database transactions, the Oracle Rdb RMU/UNLOAD/AFTER_JOURNAL command
creates temporary work files. There was a problem managing the buffer pools used with these work files
which could cause a SYSTEM−W−ENDOFFILE error to occur when reading a work file when multiple
database tables were being unloaded in the same RMU/UNLOAD/AFTER_JOURNAL command. This error
would cause the command to abort the unload operation.

%RMU−F−FILACCERR, error reading work file
DEVICE:[DIRECTORY]U2J4IN470PA101HE0280.TMP;1
−SYSTEM−W−ENDOFFILE, end of file
%RMU−F−FTL_RMU, Fatal error for RMU operation at 7−JUL−2011 14:18:19.67

This problem has been fixed. The workaround for this problem in earlier versions of Oracle Rdb is to not
unload all the database tables in the same RMU/UNLOAD/AFTER_JOURNAL command.

The following example shows the problem and the workaround. The problem occurs when three tables are
unloaded in the same RMU/UNLOAD/AFTER_JOURNAL command. The problem does not happen if two
tables are unloaded in one RMU/UNLOAD/AFTER_JOURNAL command and one table is unloaded in a
second RMU/UNLOAD/AFTER_JOURNAL command. Three RMU/UNLOAD/AFTER_JOURNAL
commands, each unloading one table, could also have been used as a workaround.

$ RMU/UNLOAD/AFTER_JOURNAL/INCL=ACT=(NOCOMMIT)/STAT=1800 −
/RESTORE_METADATA=TESTRDB_MULTI.METADATA −
/table=(name=T1,output=rdb_logminer_output_file) −
/table=(name=T2,output=rdb_logminer_output_file) −
/table=(name=T3,output=rdb_logminer_output_file) −
/restart=1−28−1−161750−25853−25853 /log −
TESTRDB_MULTI.RDB TESTRDB_PDE.AIJ
%RMU−I−LMMFRDCNT, Read 427 objects from metadata file
"DEVICE:[DIRECTORY]TESTRDB_MULTI.METADATA;1"
%RMU−I−UNLAIJFL, Unloading table T1 to
DEVICE:[DIRECTORY]RDB_LOGMINER_OUTPUT_FILE.DAT;57
%RMU−I−UNLAIJFL, Unloading table T2 to
DEVICE:[DIRECTORY]RDB_LOGMINER_OUTPUT_FILE.DAT;57
%RMU−I−UNLAIJFL, Unloading table T3 to
DEVICE:[DIRECTORY]RDB_LOGMINER_OUTPUT_FILE.DAT;57
%RMU−I−LOGOPNAIJ, opened journal file
DEVICE:[DIRECTORY]TESTRDB_PDE.AIJ;1 at 7−JUL−2011 14:18:18.58
%RMU−I−AIJRSTSEQ, journal sequence number is "1"
%RMU−F−FILACCERR, error reading work file
DEVICE:[DIRECTORY]U2J4IN470PA101HE0280.TMP;1
−SYSTEM−W−ENDOFFILE, end of file
%RMU−F−FTL_RMU, Fatal error for RMU operation at 7−JUL−2011 14:18:19.67
$ RMU/UNLOAD/AFTER_JOURNAL/INCL=ACT=(COMMIT)/STAT=1800 −
/RESTORE_METADATA=TESTRDB_MULTI.METADATA −
/table=(name=T1,output=rdb_logminer_output_file) −
/table=(name=T3,output=rdb_logminer_output_file) −
/restart=1−28−1−161750−25853−25853 /log −

4.4 LogMiner Errors Fixed 123

TESTRDB_MULTI.RDB TESTRDB_PDE.AIJ
%RMU−I−LMMFRDCNT, Read 427 objects from metadata file
"DEVICE:[DIRECTORY]TESTRDB_MULTI.METADATA;1"
%RMU−I−UNLAIJFL, Unloading table T1 to
DEVICE:[DIRECTORY]RDB_LOGMINER_OUTPUT_FILE.DAT;58
%RMU−I−UNLAIJFL, Unloading table T3 to
DEVICE:[DIRECTORY]RDB_LOGMINER_OUTPUT_FILE.DAT;58
%RMU−I−LOGOPNAIJ, opened journal file
DEVICE:[DIRECTORY]TESTRDB_PDE.AIJ;1 at 7−JUL−2011 14:19:23.36
%RMU−I−AIJRSTSEQ, journal sequence number is "1"
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 2
%RMU−I−LOGSUMMARY, total 6299 transactions committed
%RMU−I−LOGSUMMARY, total 0 transactions rolled back
$ RMU/UNLOAD/AFTER_JOURNAL/INCL=ACT=(COMMIT)/STAT=1800 −
/RESTORE_METADATA=TESTRDB_MULTI.METADATA −
/table=(name=T2,output=rdb_logminer_output_file) −
/restart=1−28−1−161750−25853−25853 /log −
TESTRDB_MULTI.RDB TESTRDB_PDE.AIJ
%RMU−I−LMMFRDCNT, Read 427 objects from metadata file
"DEVICE:[DIRECTORY]TESTRDB_MULTI.METADATA;1"
%RMU−I−UNLAIJFL, Unloading table T2 to
DEVICE:[DIRECTORY]RDB_LOGMINER_OUTPUT_FILE.DAT;59
%RMU−I−LOGOPNAIJ, opened journal file
DEVICE:[DIRECTORY]TESTRDB_PDE.AIJ;1 at 7−JUL−2011 14:20:31.30
%RMU−I−AIJRSTSEQ, journal sequence number is "1"
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 2
%RMU−I−LOGSUMMARY, total 6299 transactions committed
%RMU−I−LOGSUMMARY, total 0 transactions rolled back

The following example shows that this problem has been fixed. Now all the tables can be unloaded in the
same RMU/UNLOAD/AFTER_JOURNAL command and the command completes with no error.

$ RMU/UNLOAD/AFTER_JOURNAL/INCL=ACT=(NOCOMMIT)/STAT=1800 −
/RESTORE_METADATA=TESTRDB_MULTI.METADATA −
/table=(name=T1,output=rdb_logminer_output_file) −
/table=(name=T2,output=rdb_logminer_output_file) −
/table=(name=T3,output=rdb_logminer_output_file) −
/restart=1−28−1−161750−25853−25853 /log −
TESTRDB_MULTI.RDB TESTRDB_PDE.AIJ
%RMU−I−LMMFRDCNT, Read 427 objects from metadata file
"DEVICE:[DIRECTORY]TESTRDB_MULTI.METADATA;1"
%RMU−I−UNLAIJFL, Unloading table T1 to
DEVICE:[DIRECTORY]RDB_LOGMINER_OUTPUT_FILE.DAT;56
%RMU−I−UNLAIJFL, Unloading table T2 to
DEVICE:[DIRECTORY]RDB_LOGMINER_OUTPUT_FILE.DAT;56
%RMU−I−UNLAIJFL, Unloading table T3 to
DEVICE:[DIRECTORY]RDB_LOGMINER_OUTPUT_FILE.DAT;56
%RMU−I−LOGOPNAIJ, opened journal file
DEVICE:[DIRECTORY]TESTRDB_PDE.AIJ;1 at 7−JUL−2011 14:15:47.64
%RMU−I−AIJRSTSEQ, journal sequence number is "1"
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 2
%RMU−I−LOGSUMMARY, total 6299 transactions committed
%RMU−I−LOGSUMMARY, total 0 transactions rolled back

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

Oracle® Rdb for OpenVMS

4.4 LogMiner Errors Fixed 124

4.5 RMU Show Statistics Errors Fixed

4.5.1 RMU/SHOW STATISTICS Configuration File Problems
in Oracle Rdb Release 7.2.5.0

Bugs 12710800 and 12710931

The Oracle Rdb RMU/SHOW STATISTICS implementation for Configuration File support did not work
correctly in Oracle Rdb Release 7.2.5.0. This problem did not affect other RMU/SHOW STATISTICS
functions, just the functions related to the Configuration File. The workaround for this problem is not to use
the Configuration File with RMU/SHOW STATISTICS for Release 7.2.5.0 but to use the equivalent
command line qualifiers if they exist.

The following shows two such Oracle Rdb Release 7.2.5.0 RMU/SHOW STATISTICS Configuration File
problems. In Oracle Rdb Release 7.2.5.0, when the RMU/SHOW STATISTICS command is invoked with a
Configuration File, CONFIGURE.CFG, which specifies that a stall log file, a timeout log file, and a deadlock
log file are to be created, an access violation occurs, the command is aborted and no log files are created. In
the second example, when the RMU/SHOW STATISTICS command is executed a second time and the
command "!A" is executed specifying that the current RMU/SHOW STATISTICS configuration is to be
saved to the Configuration File, CONFIGURE2.CFG, another access violation occurs and the command is
also aborted.

$ RMU/SHOW VERSION
Executing RMU for Oracle Rdb V7.2−500 on OpenVMS Alpha V8.3−V84
$ CREATE CONFIGURE.CFG
STALL_LOG = "a.log";
TIMEOUT_LOG = "b.log";
DEADLOCK_LOG = "c.log";
$ RMU /SHOW STATISTICS /INTERACTIVE MF_PERSONNEL −
 /CONFIGURE=CONFIGURE.CFG
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
 virtual address=000000000000001D, PC=0000000000342A80, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file DEVICE:[DIRECTORY]RMUBUGCHK.DMP;
%RMU−F−FTL_SHOW, Fatal error for SHOW operation at 18−JUL−2011 16:21:37.94
$ DIR *.LOG

%DIRECT−W−NOFILES, no files found
$ RMU/SHOW STATISTICS/INTERACTIVE MF_PERSONNEL
!
A
CONFIGURE2.CFG
%SYSTEM−F−ACCVIO, access violation, reason mask=04,
 virtual address=000000007AA52000, PC=FFFFFFFF81111328, PS=0000001B

 Improperly handled condition, image exit forced by last chance handler.
 Signal arguments: Number = 0000000000000005
 Name = 000000000000000C
 0000000000000004
 000000007AA52000
 FFFFFFFF81111328
 000000000000001B

 Register dump:

4.5 RMU Show Statistics Errors Fixed 125

 R0 = 000000007AA4B913 R1 = FFFFFFFF813E4E2C R2 = 000000007BE78408
 R3 = 000000007AA4B8F0 R4 = 0000000000000023 R5 = 0000000022203D20
 R6 = 00000000000E0000 R7 = 0000000000003B22 R8 = 0000000001000000
 R9 = 00000000010E00FF R10 = 00000000000F8B18 R11 = 00000000001DA1E8
 R12 = 00000000056EC0D4 R13 = 0000000001000000 R14 = 0000000000136498
 R15 = 00000000001CF610 R16 = 000000007AA520D8 R17 = 00000000434EDFF3
 R18 = 0000000000000000 R19 = 0000000000000000 R20 = 0000000000000003
 R21 = 000000007AA4B8F0 R22 = 0000000000000000 R23 = 000000007AA4B7B0
 R24 = 00000000000183B2 R25 = 0000000000000003 R26 = FFFFFFFF813687C4
 R27 = 0000000000000000 R28 = 000000007AA520D8 R29 = 000000007BE6BC00
 SP = 000000007AA4B7B0 PC = FFFFFFFF81111328 PS = 300000000000001B

The following example shows that the two Oracle Rdb Release 7.2.5.0 RMU/SHOW STATISTICS
Configuration File problems described in the previous example have been fixed. In the first command, the
three log files specified by the Configutation File are created and then written to during the RMU/SHOW
STATISTICS session. In the second command, a new Configuration File is created containing the current
RMU/SHOW STATISTICS configuration.

$ CREATE CONFIGURE.CFG
STALL_LOG = "a.log";
TIMEOUT_LOG = "b.log";
DEADLOCK_LOG = "c.log";
$ RMU /SHOW STATISTICS /INTERACTIVE MF_PERSONNEL −
 /CONFIGURE=CONFIGURE.CFG
%RMU−I−LOGCREOUT, created output file DEVICE:[DIRECTORY]A.LOG;1
%RMU−I−LOGCREOUT, created output file DEVICE:[DIRECTORY]B.LOG;1
%RMU−I−LOGCREOUT, created output file DEVICE:[DIRECTORY]C.LOG;1
$ DIR *.LOG

Directory DEVICE:[DIRECTORY]

A.LOG;1 B.LOG;1 C.LOG;1

Total of 3 files.
$ RMU/SHOW STATISTICS/INTERACTIVE MF_PERSONNEL
!
A
CONFIGURE2.CFG

$ DIR CONFIGURE2.CFG

Directory DEVICE:[DIRECTORY]

CONFIGURE2.CFG;1

Total of 1 file.

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.5.2 RMU/SHOW STATISTICS Release 7.2.5.0 Hot Row
Information Screen %SYSTEM−F−ACCVIO

The Oracle Rdb RMU/SHOW STATISTICS Row Cache "Hot Row Information" display screen access
violates in Oracle Rdb Release 7.2.5.0. This problem does not affect other RMU/SHOW STATISTICS
functions. There is no workaround for this problem.

Oracle® Rdb for OpenVMS

4.5.2 RMU/SHOW STATISTICS Release 7.2.5.0 Hot Row Information Screen %SYSTEM−F−ACCVIO126

The following shows the problem. In Oracle Rdb Release 7.2.5.0, when the RMU/SHOW STATISTICS
command Row Cache "Hot Row Information" display screen is invoked, a %SYSTEM−F−ACCVIO access
violation occurs and an RMUBUGCHK.DMP is created with the stack trace displayed.

$ RMU/SHOW VERSION
Executing RMU for Oracle Rdb V7.2−500 on OpenVMS Alpha V8.3−V84
$ RMU/SHOW STATISTICS FOO.RDB

Node: NODE01 (1/1/1) Oracle Rdb V7.2−500 Perf. Monitor 9−AUG−2011 11:27:09.19
Rate: 3.00 Seconds Row Cache Overview (Unsorted) Elapsed: 00:01:36.26
Page: 1 of 1 DEVICE:[DIRECTORY]FOO.RDB;1 Mode: Online

Cache.Name.............. #Searches Hit% Full% #Inserts #Wrap #Slots Len
RDB$SYSTEM_CACHE 0 0.0 0.0 0 0 500 1000

%SYSTEM−F−ACCVIO, access violation, reason mask=04,
 virtual address=FFFFFFFF800000F0, PC=000000000072F834, PS=0000001B
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−I−BUGCHKDMP, generating bugcheck dump file
DEVICE:[DIRECTORY]RMUBUGCHK.DMP;
%RMU−F−FTL_SHOW, Fatal error for SHOW operation at 9−AUG−2011
11:27:33.56
$ type DEVICE:[DIRECTORY]RMUBUGCHK.DMP

This file was generated by Oracle Rdb V7.2−500 upon detection of a
fatal, unexpected, error. Please return this file, the query or
program that produced the bugcheck, the database, monitor log, and any
other pertinent information to your Oracle support representative for
assistance.

==
 Stack Dump Summary
==

***** Exception at 000000000072F834 : RMU72\KUTDIS$SETUP_RCD_ACTRTN + 000001F4
%SYSTEM−F−ACCVIO, access violation, reason mask=04,
 virtual address=FFFFFFFF800000F0, PC=000000000072F834, PS=0000001B
Saved PC = 000000000066F4C4 : RMU72\KUTDIS$SETUP_COMMON + 00000144
Saved PC = 000000000065B184 : RMU72\KUTDIS$BATCH_SETUP_COMMON + 00000084
Saved PC = 00000000006672A4 : RMU72\KUTDIS$MAIN_MENU_ACTIONS + 000002B4
Saved PC = 000000000065E3E4 : RMU72\KUTDIS$DO_UNSOLICITED_INPUT + 000002B4
Saved PC = 00000000006E3308 : RMU72\KUTDIS$UNSOLICITED_INPUT_ASTX + 000000D8
Saved PC = 000000000065D694 : RMU72\KUTDIS$DISPATCH + 000000A4
Saved PC = 0000000000656344 : RMU72\KUT$DISPLAY + 00001D04
Saved PC = 00000000005B2E78 : RMU72\RMU$DISPLAY + 000036B8
Saved PC = 00000000001FF50C : RMU72\RMU$SHOW + 00000ECC
Saved PC = 00000000003DE45C : RMU72\RMU_DISPATCH + 000013BC
Saved PC = 00000000003DCC6C : RMU72\RMU_STARTUP + 000004FC
Saved PC = 00000000001F0F24 : RMU72\RMU$MAIN + 00000034
Saved PC = 000000007AECF5D8 : Image DCL + 000935D8

The following example shows that this problem has been fixed and the RMU/SHOW STATISTICS Row
Cache "Hot Row Information" screen is now displayed correctly.

$ RMU/SHOW STATISCTICS FOO.RDB

Node: NODE01 (1/1/1) Oracle Rdb V7.2−510 Perf. Monitor 9−AUG−2011
 11:20:20.64
Rate: 3.00 Seconds Hot Row Information Elapsed: 00:04:34.18

Oracle® Rdb for OpenVMS

4.5.2 RMU/SHOW STATISTICS Release 7.2.5.0 Hot Row Information Screen %SYSTEM−F−ACCVIO127

Page: 1 of 16 DEVICE:[DIRECTORY]FOO.RDB;1 Mode: Online

 For Cache: RDB$SYSTEM_CACHE (unsorted)
Area:Page:Ln #Users State Length SlotNo Area:Page:Ln #Users State Length SlotNo
Empty 0 0 0 Empty 0 0 16
Empty 0 0 1 Empty 0 0 17
Empty 0 0 2 Empty 0 0 18
Empty 0 0 3 Empty 0 0 19
Empty 0 0 4 Empty 0 0 20
Empty 0 0 5 Empty 0 0 21
Empty 0 0 6 Empty 0 0 22
Empty 0 0 7 Empty 0 0 23
Empty 0 0 8 Empty 0 0 24
Empty 0 0 9 Empty 0 0 25
Empty 0 0 10 Empty 0 0 26
Empty 0 0 11 Empty 0 0 27
Empty 0 0 12 Empty 0 0 28
Empty 0 0 13 Empty 0 0 29
Empty 0 0 14 Empty 0 0 30
Empty 0 0 15 Empty 0 0 31

Config Exit Help Menu >next_page <prev_page]next_obj [prev_obj Options Set_rate

This problem has been corrected in Oracle Rdb Release 7.2.5.1.

4.5.3 Unexpected Failure in COSI_MEM_FREE_VMLIST
When Using RMU Show Statistics

Bug 9853784

In prior versions of Oracle Rdb, the RMU Show Statistics command may abort with a bugcheck similar to the
following footprint.

Itanium OpenVMS 8.3−1H1•
Oracle Rdb Server 7.2.4.1.0•
Got a RMUBUGCHK.DMP•
SYSTEM−F−ACCVIO, access violation, virtual address=0000000034383030•
Exception occurred at RMU72\COSI_MEM_FREE_VMLIST + 00000132•
Called from RMU72\KUTDIS$TOOLS_CONTROL + 00010170•
Called from RMU72\KUTDIS$TOOLS_MENU + 0000DBC0•
Called from RMU72\KUTDIS$MAIN_MENU_ACTIONS + 000032D0•
Running image RMU72.EXE•
Command line was: RMUI/SHOW STAT MF_PERSONNEL•

This occurs when the list of process ID's listed by SHOW STATISTICS exceeds an internal buffer
(approximately 144 entries).

For instance, when entering this sequence of commands on the problem system, RMU wanted to display a list
of 200 PID values.

!•
R (<<more>>)•
J (Process monitoring)•
B (Activate specific eligible process)•

Oracle® Rdb for OpenVMS

4.5.3 Unexpected Failure in COSI_MEM_FREE_VMLIST When Using RMU Show Statistics 128

When prompted answer with "?" to get a full list of process ids.•

Note

Actual menu selections may differ depending on the Rdb version being used.

This problem has been corrected in Oracle Rdb Release 7.2.5.1. RMU SHOW STATS now dynamically
allocates the list to accommodate a virtually unlimited list of process ID's.

4.5.4 Invalid Average Transaction Duration Value Displayed
When Using RMU Show Statistics

Bug 13017360

With Oracle Rdb Release 7.2.5, the Oracle Rdb RMU Show Statistics "Transaction Duration" screen
displayed an incorrect average transaction duration value.

The command to see that statistics screen is:

$ RMU/SHOW STATISTICS MF_PERSONNEL/SCREEN="Transaction Duration (Total)"

In most cases, RMU SHOW STATS would only display "<−avg=0.000000". The value displayed was
1/10,000th of the true value, leading to a much smaller number than the actual value.

This problem has been corrected in Oracle Rdb Release 7.2.5.1. RMU SHOW STATS now shows the correct
statistics for the average transaction duration.

4.5.5 RMU Show Statistics Sometimes Bugchecks When
Using Process Monitoring

Bug 13070947

The Oracle Rdb RMU Show Statistics command "Process monitoring" option would sometimes bugcheck.
The following sequence of commands, while in an RMU/SHOW STATISTICS window, would sometimes
result in a bugcheck.

 ! (to get to the Select Tool)
 R. <<more>>
 J. Process monitoring
 B. Activate specific eligible process
 Enter process ID to "activate" (or "?"): (enter id here)

 ! (to get to the Select Tool)
 J. Process monitoring
 A. Select activated process to monitor
 Process detached; Continue reviewing? ("Yes" to continue, "RETURN" to cancel)

The bugcheck looked like the following:

***** Exception at FFFFFFFF84230400 : Image LIBOTS + 00002400
%SYSTEM−F−ACCVIO, access violation, reason mask=00,

Oracle® Rdb for OpenVMS

4.5.4 Invalid Average Transaction Duration Value Displayed When Using RMU Show Statistics 129

virtual address=0000000003A64000, PC=FFFFFFFF84230400, PS=0000001B
Saved PC = 000000008089AB10 : RMU72\KUTDIS$TOOLS_CONTROL + 0000EE80
Saved PC = 00000000809855A0 : RMU72\KUTDIS$TOOLS_MENU + 0000DBC0

This problem has been corrected in Oracle Rdb Release 7.2.5.1. RMU will no longer bugcheck and will show
the requested statistics.

4.5.6 RMU Show Statistics Sometimes Bugchecks on Row
Cache Information Screen

Bug 13558012

The Oracle Rdb RMU Show Statistics command "Hot Row Information" option would sometimes bugcheck.
The following sequence of commands, while in an RMU/SHOW STATISTICS window, would sometimes
result in a bugcheck when monitoring row cache.

 M (Menu)
 X (Row Cache Information)
 B (Hot Row Information)
 Select one cache

The bugcheck had the following footprint:

SYSTEM−F−ACCVIO, access violation, virtual address=FFFFFFFF817B80B0
Exception occurred at RMU72\KUTDIS$SETUP_RCD_ACTRTN + 00000460

This problem has been corrected in Oracle Rdb Release 7.2.5.1. RMU will no longer bugcheck and will show
the requested statistics.

Oracle® Rdb for OpenVMS

4.5.6 RMU Show Statistics Sometimes Bugchecks on Row Cache Information Screen 130

Chapter 5
Software Errors Fixed in Oracle Rdb Release 7.2.5
This chapter describes software errors that are fixed by Oracle Rdb Release 7.2.5.

Chapter 5Software Errors Fixed in Oracle Rdb Release 7.2.5 131

5.1 Software Errors Fixed That Apply to All
Interfaces

5.1.1 Server Process Name Format Changed

When starting server processes (such as database recovery processes), previous releases of Oracle Rdb would
always start creating processes with a name starting with a number one (such as RDM_RDB72_1). In some
cases, when starting a large number of processes or when multiple databases were opened on a system,
duplicate names would be created and processes would have to be re−started with a different process name.
This resulted in additional system resources being consumed.

This problem has been reduced in Oracle Rdb Release 7.2.5. Server processes are created with much more
unique names.

5.1.2 Drop Storage Area Cascade Failed With Lock On
Unrelated Area

Bug 7496558

When dropping a storage area using the CASCADE option, a lock on an unrelated area could have caused the
drop to fail.

For example, if an RMU/UNLOAD was running which referenced storage areas unrelated to the target area of
the ALTER DATABASE ... DROP STORAGE AREA ... CASCADE statement, a LOCK_CONFLICT error
was reported.

SQL> ALTER DATABASE FILENAME DDLLOCK DROP STORAGE AREA T5 CASCADE;
%RDB−E−LOCK_CONFLICT, request failed due to locked resource
−RDMS−F−LCKCNFLCT, lock conflict on client 'DDL' 4C444400000055

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.3 Temporary File Names

Oracle Rdb generates random file names for various temporary functions (such as AIJ recovery work files). In
rare cases, the file names would not be unique in a cluster and could potentially cause a conflict.

This problem has been corrected in Oracle Rdb Release 7.2.5. Oracle Rdb now generates file names that are
unique within a cluster.

5.1.4 Incorrect Storage Area Selected In Cluster

Bug 9629294

In an environment where a database is opened on multiple nodes of a cluster, it is possible that certain
combinations of dropping and adding storage areas online with storage area names being re−used may result

5.1 Software Errors Fixed That Apply to All Interfaces 132

in storage map creation selecting an incorrect area.

The following command sequence on two nodes of a cluster shows one possible case where a table is
incorrectly mapped to a storage area not specified. Note that the final "RMU/ANALYZE/AREA=A2
TESTDB" command output shows both tables T1 and T2 being unexpectedly stored in area A2 even though
the storage map has specified area A1 for table T1.

 NODEA NODEB
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
$ SQL$
 CREATE DATABASE FILE TESTDB
 OPEN IS MANUAL
 RESERVE 10 STORAGE AREAS
 CREATE STORAGE AREA DUMMY;
 EXIT
$ RMU /OPEN TESTDB

 $ RMU /OPEN TESTDB
 $ SQL$
 ALTER DATABASE FILE TESTDB
 ADD STORAGE AREA A1
 ADD STORAGE AREA A2;
 ATTACH 'FILE TESTDB';
 CREATE TABLE T1 (I1 INT);
 CREATE STORAGE MAP M1
 FOR T1 STORE IN A1;
 CREATE TABLE T2 (I1 INT);
 CREATE STORAGE MAP M2
 FOR T2 STORE IN A2;
 COMMIT;
 EXIT
 $ RMU /CLOSE TESTDB

$ RMU/CLOSE TESTDB

 $ RMU/OPEN TESTDB

$ RMU /OPEN TESTDB
$ SQL$
 ATTACH 'FILE TESTDB';
 DROP TABLE T1;
 DROP TABLE T2;
 COMMIT;

 $ SQL$
 ALTER DATABASE FILE TESTDB
 DROP STORAGE AREA A1
 DROP STORAGE AREA A2;
 ALTER DATABASE FILE TESTDB
 ADD STORAGE AREA A2;
 ALTER DATABASE FILE TESTDB
 ADD STORAGE AREA A1;
 EXIT

 CREATE TABLE T1 (I1 INT);
 CREATE STORAGE MAP M1
 FOR T1 STORE IN A1;
 CREATE TABLE T2 (I1 INT);
 CREATE STORAGE MAP M2
 FOR T2 STORE IN A2;
 COMMIT;

Oracle® Rdb for OpenVMS

5.1 Software Errors Fixed That Apply to All Interfaces 133

 EXIT

$ RMU/ANALYZE/AREA=A2 TESTDB
... Both tables are stored in A2

This problem was caused by a failure to invalidate a cache of storage area names during a search for a
matching name. Because the cache was stale, an incorrect storage area slot was selected.

This problem has been corrected in Oracle Rdb Release 7.2.5. The internal cache of storage area names is now
correctly synchronized in a cluster environment.

5.1.5 Unexpected SYSTEM−F−VA_NOTPAGALGN Error With
Global Buffers and Reserved Memory Registry

Bug 8204438

In some cases, when using database global buffers along with a resident database global section along with the
global section being allocated via the OpenVMS Reserved Memory Registry, opening the database may fail
with the error SYSTEM−F−VA_NOTPAGALGN as in the following example:

$ RMU/OPEN FOO/GLOBAL_BUFFERS=TOTAL=1231
%RDMS−F−CANTOPENDB, database could not be opened as requested
−RDMS−F−CANTCREGBL, error creating and mapping database global section
−SYSTEM−F−VA_NOTPAGALGN, specified virtual address is not CPU−specific page
aligned

This problem has been corrected in Oracle Rdb Release 7.2.5. As a workaround if this problem is
encountered, the memory reservation for the database global section can be removed as in the following
example:

$ MCR SYSMAN RESERVED_MEMORY FREE RDM72N1DGA2422960004000000000000
%SMI−S−RMRFREPAG, pages successfully freed from reservation
$ RMU/OPEN FOO/GLOBAL_BUFFERS=TOTAL=1231

5.1.6 Unexpected Bugcheck at
RDMS$$PARSE_INTCOM_BUFFER Which Reports
"Obsolete Version of Database"

Bugs 460614, 3314889, 3655192, 3658460, 6988338, 8271388, 8616430, 8785676, 9206054 and 9887582

In prior releases of Oracle Rdb, it was possible in rare circumstances to have a bugcheck generated similar to
that shown below. This problem occurred during database attach and was due to a timing issue related to
asynchonous database events.

Itanium OpenVMS 8.3−1H1•
Oracle Rdb Server 7.2.3.1.0•
Got a RDSBUGCHK.DMP•
RDB−F−WRONGRDB, RDB$SHARE image is wrong•
RDMS−F−OBSVER, obsolete version of database•

Oracle® Rdb for OpenVMS

5.1.5 Unexpected SYSTEM−F−VA_NOTPAGALGN Error With Global Buffers and Reserved Memory Registry134

Exception occurred at RDMSHRP72\RDMS$$PARSE_INTCOM_BUFFER + 00000740•
Called from RDMSHRP72\KODSTREAM$JACKET + 00000100•
Called from symbol not found•
Called from RDMSHRP72\KOD$SETSTK_AND_CONTINUE + 00000180•

This problem has been corrected in Oracle Rdb Release 7.2.4.2 for the ATTACH, CONNECT and DECLARE
ALIAS statements. This release, 7.2.5, also corrects other areas for DISCONNECT, SET SESSION
AUTHORIZATION, DROP DATABASE, and ALTER DATABASE.

5.1.7 RDBPRE Precompiler RUNTIMSTK Informational
Message From MACRO Compiler

In some cases, the RDBPRE Precompiler may create code that causes the MACRO−32 Compiler for
OpenVMS I64 and the MACRO−32 Compiler for OpenVMS Alpha to display an informational message
similar to "%IMAC−I−RUNTIMSTK, run time stack differences prevent accurate stack tracing". This
informational message can be safely ignored.

Consider the following example program:

PROGRAM−ID. x.
DATA DIVISION.
WORKING−STORAGE SECTION.

&RDB& INVOKE DATABASE EXTERNAL d1 = FILENAME "PERSONNEL"
&RDB& INVOKE DATABASE EXTERNAL d2 = FILENAME "PERSONNEL"

PROCEDURE DIVISION.
01−INITIALIZE−AND−PROCESS.
&RDB& FINISH
 DISPLAY "Hello World".
 EXIT PROGRAM.

END PROGRAM x.

During compilation, the "RUNTIMSTK" informational message is displayed:

$ RDBPRE /COBOL X.RCO

3$:
^
%IMAC−I−RUNTIMSTK, run time stack differences prevent accurate
stack tracing at line number 214 in file DUA0:[RDB73]X.MAR;1

This issue has been corrected in Oracle Rdb Release 7.2.5. The generated code for the FINISH section has
been modified to avoid the "RUNTIMSTK" informational message.

5.1.8 Bugcheck At RUJUTL$ROLLBACK_LOOP

Bug 9856675

In very rare cases, it is possible for a rollback operation (either explicit or implicit) to fail with a bugcheck due
to entries being unable to be "undone" on a database page due to an unexpected lack of "locked" space. The
sequence of events is complex and requires a specific ordering of operations and accumulation of locked and

Oracle® Rdb for OpenVMS

5.1.7 RDBPRE Precompiler RUNTIMSTK Informational Message From MACRO Compiler 135

free space on a database page among several processes.

The bugcheck "footprint" will be similar to the following:

Exception occurred at RDMSHRP72\RUJUTL$ROLLBACK_LOOP + 000010A1
Called from RDMSHRP72\RUJ$ROLLBACK + 000000F0
Called from RDMSHRP72\KOD$ROLLBACK + 000007A0
Called from RDMSHRP72\RDMS$$INT_ROLLBACK_TRANSACTION + 00001140
Called from RDMSHRP72\RDMS$TOP_ROLLBACK_TRANSACTION + 00000A90

Analysis of the bugcheck dump will indicate one or more entries on the "FBIJBL" queue similar to the
following:

FBIJBL @1C3109C0: QUE = 16E5B0F8:16E5B0F8
 +−−−+
 | This JFA 0 Record sequence number 640 |
 | Prior JFA 94096 Previous TSN was 0:3390022611 |
 | Modified segment 911:11828:16 with length of 64 bytes |
 +−−−+

The cause of the problem was related to an incorrect synchronization between processes manipulating the
locked and free space while adding lines to the page.

This problem has been corrected in Oracle Rdb Release 7.2.5. Oracle recommends that all Rdb installations
upgrade to at least Oracle Rdb Release 7.2.5 to implement the correction.

5.1.9 ALTER TABLE Fails With Constraint Violation

Bug 4904254

A customer reported that RMU/VERIFY/ALL reported incorrect constraint failure.

%RMU−W−CONSTFAIL, Verification of constraint
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−INTEG_FAIL, violation of constraint CODE_NOT_IN_T2 caused operation
to fail

The constraint was checked in SQL and showed no violations.

The following ALTER TABLE statement is the equivalent SQL which shows the constraint failure:

alter table T1 add constraint
 constraint CODE_NOT_IN_T2
 check
 (exists
 (select pcode from T2 a
 where a.pcode = T1.pcode and
 a.ptype in
 ('BOX','BUL','COL','ROL','TPP','TPN','CON','SHE')))
 deferrable;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−INTEG_FAIL, violation of constraint CODE_NOT_IN_T2 caused operation
to fail
−RDB−F−ON_DB, on database <directory_spec>TESTDB.RDB;1
rollback;

Oracle® Rdb for OpenVMS

5.1.9 ALTER TABLE Fails With Constraint Violation 136

The key parts of this cursor query which contributed to the situation leading to the error are these:

The main query is an ALTER TABLE statement on a table to add a constraint1.
The CHECK contains an EXISTS statement of SELECT query with IN clause and a join predicate2.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.10 Increased Default for RDMS$BIND_WORK_VM and
Relocation of Related VM Buffer to P2 Virtual Address
Space

When executing certain kinds of queries that yield large record streams, the Oracle Rdb optimizer may have to
create an intermediate table to store the results of a subquery. Oracle Rdb stores these results in sorted order
for further execution in join operations.

The RDMS$BIND_WORK_VM logical name can reduce the overhead of disk I/O operations for matching
operations that utilize the internal intermediate table. This logical name lets you specify the amount of virtual
memory (VM) in bytes that will be allocated to your process for use as a buffer for the subquery results. Once
the allocation is exhausted, additional data values are written to a temporary file on disk.

In prior versions of Oracle Rdb, the buffers for these subquery results were allocated in 32−bit process (P0)
virtual address space. For some complex queries, the 1GB size of P0 space drastically limited the viable size
of the internal buffers where larger buffers would otherwise increase performance by avoiding disk file IO.

This problem has been corrected in Oracle Rdb Release 7.2.5. The internal buffers have been moved to 64−bit
process (P2) virtual address space in order to both reduce use of 32−bit process (P0) virtual address space and
to permit much larger buffers to be utilized. In addition, the default value for the RDMS$BIND_WORK_VM
logical name has been increased from 10,000 bytes to 100,000 bytes. The maximum value is 2,147,483,647
(2GB).

5.1.11 Full Outer Join Query Returns Wrong Column Values
When Outer Table is Empty

Bug 9975516

In prior releases of Oracle Rdb, the following example returns wrong column values when the outer table is
empty:

create table ta (fx char(3), fy char(1));
create table tb (fx char(3), fy char(1));

create unique index ia on ta (fx);
create unique index ib on tb (fx);

! insert one row in TA
insert into ta values ('AAA', '1');

! insert two rows in TB
insert into tb values ('ABC', '1');
insert into tb values ('BBB', '1');

Oracle® Rdb for OpenVMS

5.1.10 Increased Default for RDMS$BIND_WORK_VM and Relocation of Related VM Buffer to P2 Virtual Address Space137

! the full outer join returns correctly
select * from ta a full outer join tb b on a.fx = b.fx;
 A.FX A.FY B.FX B.FY
 AAA 1 NULL NULL
 NULL NULL ABC 1
 NULL NULL BBB 1
3 rows selected

!If all the rows in table "ta" are deleted, the same query returns the correct
!number of rows but wrong column values for the inner table "tb":

delete from ta;
1 row deleted

select * from ta a full outer join tb b
on a.fx = b.fx;
 A.FX A.FY B.FX B.FY
 NULL NULL
 NULL NULL
2 rows selected

!We would expect to see the following correct result:
 A.FX A.FY B.FX B.FY
 NULL NULL ABC 1
 NULL NULL BBB 1
2 rows selected

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.12 Reduction in Use of Rdb Executive Sort P0 Address
Space

Previously, large data structures used by internal SORT code within Rdb were allocated in program (P0)
virtual memory address space. In some cases, these data structures could consume considerable space and
could lead to exceeding the capacity of P0 address space.

The impact of this situation has been reduced in Oracle Rdb Release 7.2.5. Several of the large data structures
used by internal SORT code within Rdb have been moved to 64−bit P2 virtual memory address space.

5.1.13 Attaching to Rdb at Remote Site Stalls

Bug 9263939

Sometimes when attempting to attach to a remote Rdb database, the local process would enter a wait state and
stall. This would most likely occur when there were other processes also attempting remote attaches.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.14 Increased Default Use of "Quick Sort"

The default size of an internal "quick sort" buffer has been increased from 20,000 bytes to 409,600 bytes and
the default record limit for an internal "quick sort" has been increased from 63 to 5000. These changes should

Oracle® Rdb for OpenVMS

5.1.12 Reduction in Use of Rdb Executive Sort P0 Address Space 138

provide for improved performance of sort operations for a larger set of cases.

Note that this internal buffer is located in P2 virtual address space so the increased size should not impact use
of P0 virtual address space. It is possible that the increased default size might require additional process
working set size in order to avoid excessive page faulting.

The logical name RDMS$BIND_MAX_QSORT_COUNT is used to restrict the number of rows that can be
stored within the "quick sort" buffer. If required to revert to the prior maximum record count, this logical
name can be defined as follows:

DEFINE RDMS$BIND_MAX_QSORT_COUNT 63•

Duplicate Handling During Sort Operations

The handling of row items duplicate key values during any sort operation is undefined in
terms of the returned row order. Consider a query similar to "SELECT A,B FROM T
ORDER BY A". If there are duplicate values for colum A, the order of output for column B
is undefined and may potentially change from one execution of the query to another. If a
specific order of values for column B is required, it must be explicitly specified in the
ORDER BY clause.

5.1.15 Bugcheck While In PSII2INSERTDUPBBC

In unusual cases, when inserting duplicate entries into a sorted ranked index, it was possible for Rdb to
bugcheck with an exception "footprint" similar to the following:

***** Exception at FFFFFFFF80002840 : symbol not found
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000010048000, PC=FFFFFFFF80002840, PS=00000009
Saved PC = FFFFFFFF856874D0 : RDMSHRP72\PSII2INSERTDUPBBC + 00003230
Saved PC = FFFFFFFF8567F9E0 : RDMSHRP72\PSII2INSERTBOTTOM + 00000B80
Saved PC = FFFFFFFF85664900 : RDMSHRP72\PSII2INSERTT + 00000400
Saved PC = FFFFFFFF85664E00 : RDMSHRP72\PSII2INSERTT + 00000900
Saved PC = FFFFFFFF85664E00 : RDMSHRP72\PSII2INSERTT + 00000900
Saved PC = FFFFFFFF85664E00 : RDMSHRP72\PSII2INSERTT + 00000900
Saved PC = FFFFFFFF85664E00 : RDMSHRP72\PSII2INSERTT + 00000900
Saved PC = FFFFFFFF85664E00 : RDMSHRP72\PSII2INSERTT + 00000900
Saved PC = FFFFFFFF856676F0 : RDMSHRP72\PSII2INSERTTREE + 00000450
Saved PC = FFFFFFFF85C86E30 : RDMSHRP72\RDMS$$KOD_INSERT_TREE + 00006AB0
Saved PC = FFFFFFFF85C04160 : RDMSHRP72\RDMS$$EXE_ACTION + 00001480
Saved PC = FFFFFFFF85D00E40 : RDMSHRP72\RDMS$$C_EXE_ACTION + 00000080
Saved PC = FFFFFFFF855C9DA0 : RDMSHRP72\RDMS_EXE_INTERP + 0000FD50
Saved PC = FFFFFFFF85C61690 : RDMSHRP72\RDMS$TOP_RECEIVE_BUFFER + 00001FC0
Saved PC = FFFFFFFF85C56340 : RDMSHRP72\RDMS$TOP_START_AND_SEND + 00001D80
Saved PC = FFFFFFFF866FC1A0 : RDMSHRP72\AMAC$EMUL_CMPC5 + 00002040
Saved PC = FFFFFFFF86461E40 : RDMSHRP72\KODSTREAM$JACKET + 00000130

In some cases, this problem may have been caused by an internal data structure being overwritten, leading to
an incorrect length being calculated. It was possible for other memory structures to be compromised as well,
leading to various different symptoms.

This problem has been corrected in Oracle Rdb Release 7.2.5. The data structure length is now correctly

Oracle® Rdb for OpenVMS

5.1.15 Bugcheck While In PSII2INSERTDUPBBC 139

calculated. All customers utilizing SORTED RANKED indexes are encouraged to upgrade to this release.

5.1.16 Divide Operator Now Returns DOUBLE PRECISION
Results Rather than REAL

With this release of Oracle Rdb, all division operations (including the AVG statistical function) will produce
DOUBLE PRECISION results. In prior releases, divide operations that involved small numeric values
(TINYINT, SMALLINT, and short integer literals) resulted in REAL results (single precision) with some loss
of accuracy.

This will affect AVG or expressions that contain division (/) operators. The result might be visible as a change
in type for COMPUTED BY columns, AUTOMATIC AS columns, and view select expressions. Existing
applications which expect to receive REAL results will cause Oracle Rdb to implicitly convert from
DOUBLE PRECISION to REAL. Applications that use Dynamic SQL should ensure that the handling of
floating types is consistent with either REAL or DOUBLE PRECISION results.

In addition, on Itanium systems, some arithmetic opertions that result in REAL results (single precision
floating point) previously were performed in single precision IEEE S floating point format. These arithmetic
operations are now performed in double precision IEEE T floating point format and the results are converted
to REAL (single precision floating point) format. This may result in slightly greater precision in some cases.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.17 Unexpected Results From IN Clause on a Subselect
Containing FETCH FIRST or LIMIT TO

Bugs 10244544 and 9500560

In prior versions of Oracle Rdb, the "Index counts lookup" optimization could be incorrectly applied to a
query using a SORTED RANKED index that also included a LIMIT TO (or FETCH FIRST) clause. The
result was extra rows being returned from the query.

The following example shows this problem with an IN clause referencing a subquery containing a FETCH
FIRST ROWS ONLY clause. This clause is equivalent to the Rdb SQL LIMIT TO 1 ROWS clause.

SQL> select a
cont> from tt11
cont> where a in (select a
cont> from tt11
cont> order by a desc
cont> fetch first row only);
Tables:
 0 = TT11
 1 = TT11
Cross block of 2 entries Q1
 Cross block entry 1
 Index only retrieval of relation 0:TT11
 Index name TT11_INDEX [0:0]
 Cross block entry 2
 Conjunct: <agg0> <> 0
 Aggregate−F1: 0:COUNT−ANY (<subselect>) Q2
 Conjunct: 0.A = 1.A

Oracle® Rdb for OpenVMS

5.1.16 Divide Operator Now Returns DOUBLE PRECISION Results Rather than REAL 140

 Firstn: 1
 Index only retrieval of relation 1:TT11
 Index name TT11_INDEX [0:0] Reverse Scan Index counts lookup
 A
 164
 164
...
 471
 471
274 rows selected
SQL>

The correct results should be limited to the rows matching only the maximum values (selected by sorting the
values in descending order) for TT11 column A.

SQL> select a
cont> from tt11
cont> where a = (select a
cont> from tt11
cont> order by a desc
cont> fetch first row only);
Tables:
 0 = TT11
 1 = TT11
Cross block of 2 entries Q1
 Cross block entry 1
 Aggregate: 0:VIA (1.A) Q2
 Firstn: 1
 Index only retrieval of relation 1:TT11
 Index name TT11_INDEX [0:0] Reverse Scan
 Cross block entry 2
 Index only retrieval of relation 0:TT11
 Index name TT11_INDEX [1:1]
 Keys: 0.A = <agg0>
 A
 471
 471
 471
3 rows selected
SQL>

The workaround for this problem is to define RDMS$SET_FLAGS as "NOCOUNT_SCAN" or use SET
FLAGS 'NOCOUNT_SCAN' in SQL.

This problem has been corrected in Oracle Rdb Release 7.2.5. The Rdb optimizer now detects this case and
automatically disables the "Index counts lookup" optimization.

5.1.18 Translation From HEX Character Set is Incorrect

Bug 10265503

A problem with character set translation, introduced in V7.2 Oracle Rdb, will prevent the correct translation
of literals, variables and columns if the character set of the source object is HEX.

The following example shows this problem.

SQL> select translate (_hex'4142' using rdb$isolatin1) from rdb$database;

Oracle® Rdb for OpenVMS

5.1.18 Translation From HEX Character Set is Incorrect 141

 3431
1 row selected
SQL>

The correct results should be the translation of the hexadecimal value to the appropriate characters within the
destination character set.

SQL> select translate (_hex'4142' using rdb$isolatin1) from rdb$database;

 AB
1 row selected
SQL>

A workaround for this problem, if the source is a literal, is to use the hexadecimal literal specifier as in the
following example.

SQL> select x'4142' from rdb$database;

 AB
1 row selected
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5. Rdb now carries out the correct translation.

5.1.19 Nested Query With Left Outer Join and GROUP BY
Bugchecks During Query Compilation

Bug 10266984

In prior releases of Oracle Rdb, the following query, nested with LEFT OUTER JOIN and GROUP BY,
bugchecks during query compilation.

SELECT
 dt1.inv_date,
 dt1.method,
 sum(dt1.cnt)
FROM ! derived table:dt1
 (SELECT
 dt2.inv_id,
 dt2.inv_date,
 t4.method,
 dt2.cnt
 FROM ! derived table:dt2
 (SELECT
 t1.inv_id,
 t1.inv_date,
 t2.bid,
 t3.sid,
 sum(t2.quantity)
 FROM
 HEADER t1 JOIN
 DETAIL t2
 on (t2.inv_id=t1.inv_id)
 LEFT JOIN SPLIT t3
 on (t3.inv_id = t1.inv_id and
 t3.detail_glue = t2.detail_glue)

Oracle® Rdb for OpenVMS

5.1.19 Nested Query With Left Outer Join and GROUP BY Bugchecks During Query Compilation142

 WHERE
 t1.inv_date>'01−MAR−2010' and
 t1.cancel = 'F' and
 t1.form = 'F' and
 t2.quantity > 0
 GROUP BY
 t1.inv_id,
 t1.inv_date,
 t2.bid,
 t3.sid
) dt2 ! Derived table
 (inv_id,
 inv_date,
 bid,
 sid,
 cnt)
 JOIN SO_INVOICE_BOX_REC t4
 on (t4.inv_id = dt2.inv_id and
 t4.bid = dt2.bid)
 WHERE t4.method <> 'OTHR' or
 t4.cid <> 'OTHR' or
 t4.weight > 1
) dt1 (inv_id, ! Derived table
 inv_date,
 method,
 cnt)
 GROUP BY
 dt1.inv_date,
 dt1.method
 limit 5;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file DISK:[DIRECTORY]RDSBUGCHK.DMP;
%RDB−F−BUG_CHECK, internal consistency check failed

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.20 Query With Nested Left Outer Join Bugchecks With
Floating Overflow

Bug 10185583

In prior releases of Oracle Rdb, the following query, with nested LEFT OUTER JOIN, bugchecks with
floating overflow.

SELECT count(*)
FROM TABLE1
LEFT OUTER JOIN TABLE2
ON TABLE2.COL_193= 'C10014' and TABLE2.COL_194= '00'

LEFT OUTER JOIN TABLE3
ON TABLE3.COL_193= 'C10014' and TABLE3.COL_194= '00'

LEFT OUTER JOIN TABLE4
ON TABLE4.COL_193= 'C10014' and TABLE4.COL_194= '00'

LEFT OUTER JOIN
 (select COL_197, COL_198, COL_046 ALIAS014 from TABLE5 where COL_197='C10014'
 and COL_198='00' and COL_039='EIS' and COL_043='REL' and COL_200=1) TBL_TBL008
ON TABLE1.COL_193=TBL_TBL008.COL_197 and TABLE1.COL_194=TBL_TBL008.COL_198

Oracle® Rdb for OpenVMS

5.1.20 Query With Nested Left Outer Join Bugchecks With Floating Overflow 143

LEFT OUTER JOIN
 (select COL_197, COL_198, COL_046 ALIAS015 from TABLE5 where COL_197='C10014'
 and COL_198='00' and COL_039='EIS' and COL_043='REL' and COL_200=2) TBL_TBL009
ON TABLE1.COL_193=TBL_TBL009.COL_197 and TABLE1.COL_194=TBL_TBL009.COL_198

LEFT OUTER JOIN
 (select COL_197, COL_198, COL_046 ALIAS010 from TABLE5 where COL_197='C10014'
 and COL_198='00' and COL_039='EIS' and COL_043='GER' and COL_200=1) TBL_TBL004
ON TABLE1.COL_193=TBL_TBL004.COL_197 and TABLE1.COL_194=TBL_TBL004.COL_198

...followed by a series of left outer join here...

LEFT OUTER JOIN
 (select COL_197, COL_198, COL_046 ALIAS007 from TABLE5 where COL_197='C10014'
 and COL_198='00' and COL_039='APA' and COL_043='APA') tbl_ALIAS007
ON TABLE1.COL_193=tbl_ALIAS007.COL_197 and TABLE1.COL_194=tbl_ALIAS007.COL_198

LEFT OUTER JOIN
 (select COL_197, COL_198, COL_046 ALIAS048 from TABLE5 where COL_197='C10014'
 and COL_198='00' and COL_039='TYP' and COL_043='GIN') TBL_TBL033
ON TABLE1.COL_193=TBL_TBL033.COL_197 and TABLE1.COL_194=TBL_TBL033.COL_198

WHERE TABLE1.COL_193= 'C10014'
 AND TABLE1.COL_194= '00'
;
%RDB−E−ARITH_EXCEPT, truncation of a numeric value at runtime
−SYSTEM−F−HPARITH, high performance arithmetic trap, Imask=00000000, Fmask=00000
001, summary=08, PC=00000000008062F4, PS=0000001B
−SYSTEM−F−FLTOVF, arithmetic trap, floating overflow at PC=00000000008062F4, PS=
0000001B

This query works if the SET FLAGS OLD_COST_MODEL is applied.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.21 DBR Process Waiting for RMS Lock While Adding
Process Rights

In rare cases, it is possible for a database recovery (DBR) process to be involved in a deadlock involving a
lock on the system RIGHTSLIST file.

This problem has been corrected in Oracle Rdb Release 7.2.5. The DBR process does not grant itself
additional rights until after it has gained the database freeze lock and notified the monitor that the failed user
process may exit.

5.1.22 DBR Bugcheck at RUJUTL$ROLLBACK_LOOP +
00000760

Bug 10296522

Under certain circumstances, it may be possible for a Database Recovery Process (DBR) to fail while trying to
recover a user process, even when there is nothing to recover. This failure would generate a
RDMDBRBUG.DMP file and cause the database to shutdown. Once the shutdown occurs, a subsequent

Oracle® Rdb for OpenVMS

5.1.21 DBR Process Waiting for RMS Lock While Adding Process Rights 144

recovery operation will be successful and the database will again be accessible.

For this problem to occur, Row Cache must be enabled and an RMU/BACKUP/AFTER must occur between
the time that a user process commits one transacation and starts another transaction, which then fails before
doing any database updates.

The DBR fails because of a missing checkpoint record.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.23 Rdb Monitor Log File Write Rate Reduced

The Oracle Rdb Monitor process (RDMMON) previously would write to the monitor log file using an IO size
of either 127 or 124 disk blocks and would perform a RMS "flush" operation once per minute.

With this release of Oracle Rdb, the Monitor process now anticipates that OpenVMS patch(es) have been
installed that support using a RMS Multi Block Count (MBC) parameter larger than 127 blocks. The Oracle
Rdb Monitor process will first attempt to use a larger value and if a RMS$_MBC error is returned from the
SYS$CONNECT call to the log file, a second attempt is made with a RMS Multi Block Count (MBC)
parameter of less than 128.

In addition, the Oracle Rdb Monitor process reduces the frequency of monitor log file "flush" operations to
once every ten minutes.

For some sites with significant monitor log file write activity, these changes should serve to reduce physical
IO.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.24 Memory Layout Change For Global Section

Bug 11741649

In order to help prevent cases where shared memory is unexpectedly overwritten, the internal layout of certain
data structures has been altered to include additional "guard" pages within Rdb's memory management
subsystem.

These changes are intended to help detect and prevent unexpected memory write access to the database global
section.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.25 CONCAT on Operands of Same Datatype and Same
Size Bugchecks

Bug 11867911

In prior releases of Oracle Rdb, the following query with CONCAT bugchecks.

Oracle® Rdb for OpenVMS

5.1.23 Rdb Monitor Log File Write Rate Reduced 145

SELECT COUNT(*) FROM T1 WHERE
 COL1 = '13900' AND
 COL2
 || COL3
 || COL4
 || CAST(COL5 + 1999 AS CHAR(4))
 >
 ' '
 || ' '
 || ' '
 || CAST(0 + 1999 AS CHAR(4))
 ;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file _[directory]RDSBUGCHK.DMP;

The query works if the dialect is set to 'ORACLE LEVEL2', as in the following example.

SET DIALECT 'ORACLE LEVEL2';

SELECT COUNT(*) FROM T1 WHERE
 COL1 = '13900' AND
 COL2
 || COL3
 || COL4
 || CAST(COL5 + 1999 AS CHAR(4))
 >
 ' '
 || ' '
 || ' '
 || CAST(0 + 1999 AS CHAR(4))
 ;
Tables:
 0 = T1
Aggregate: 0:COUNT (*) Q2
Leaf#01 BgrOnly 0:T1 Card=244646
 Bool: (0.COL1 = '13900') AND (CONCAT (0.COL2, 0.COL3,
 0.COL4, CAST ((0.COL5 + 1999) AS CHAR(4))) >
 CONCAT (' ', ' ', ' ', CAST ((0 + 1999) AS CHAR(4)))
)
 BgrNdx1 T1_NDX1 [1:1] Fan=8
 Keys: 0.COL1 = '13900'
 BgrNdx2 T1_NDX2 [0:0] Fan=14
 Bool: CONCAT (0.COL2, 0.COL3, 0.COL4, CAST ((
 0.COL5 + 1999) AS CHAR(4))) > CONCAT (' ', ' ',
 ' ', CAST ((0 + 1999) AS CHAR(4)))

 8525
1 row selected

The query bugchecks when the left operands of the CONCAT are the same datatype and same size as the right
operands.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.26 SQLSRV−E−PWDEXPIRED Error Restored

Bug 11831591

In Oracle SQL/Services releases prior to 7.3.0.3, if a user account's password was expired, an attempt to

Oracle® Rdb for OpenVMS

5.1.26 SQLSRV−E−PWDEXPIRED Error Restored 146

connect got the SQLSRV−E−PWDEXPIRED error. When intrusion detection was added in Release 7.3.0.3 of
SQL/Services, this error changed to SQLSRV−F−GETACCINF. Therefore, applications were unable to trap
expired password errors in order to prompt the user for a new password.

In Oracle SQL/Services Release 7.3.1, the SQLSRV−E−PWDEXPIRED error has been restored and the
SQLSRV−F−GETACCINF error will no longer be returned in this case.

This kit provides the RDB$COSIP.EXE image required to support this change to the SQL/Services behavior.

5.1.27 Query Returns Wrong Result and Bugchecks at Exit
Using Bitmapped Scan

Bug 11076142

In prior releases of Oracle Rdb, the following query would return wrong results using Bitmapped Scan and
would bugcheck at exit time.

set flags 'bitmapped_scan';
select distinct DETAIL from T2 B, T1 M
where B.TYP = M.PID and
 M.NUMTYP = 'T_TYP' ;
Tables:
 0 = T2
 1 = T1
Reduce: 0.DETAIL
Sort: 0.DETAIL(a)
Cross block of 2 entries Q1
 Cross block entry 1
 Conjunct: 1.NUMTYP = 'T_TYP'
 Index only retrieval of relation 1:T1
 Index name IDX_EMAP_1 [0:0]
 Cross block entry 2
 Leaf#01 NdxOnly 0:T2 Card=1671 Bitmapped scan
 Bool: 0.TYP = 1.PID
 FgrNdx IDX_BSKT_0 [0:0] Fan=29
 BgrNdx1 IDX_BSKT_1 [1:1] Fan=48
 Keys: 0.TYP = 1.PID
 B.DETAIL
 11
1 row selected

! the bugcheck occurs at the exit time
exit
%RDMS−I−BUGCHKDMP, generating bugcheck dump file _[directory]RDSBUGCHK.DMP;

Disabling bitmapped scan (SET FLAGS 'NOBITMAPPED_SCAN) eliminates the problem.

set flags 'nobitmapped_scan';
select distinct DETAIL from T2 B, T1 M
where B.TYP = M.PID and
 M.NUMTYP = 'T_TYP' ;
Tables:
 0 = T2
 1 = T1
Reduce: 0.DETAIL
Sort: 0.DETAIL(a)

Oracle® Rdb for OpenVMS

5.1.27 Query Returns Wrong Result and Bugchecks at Exit Using Bitmapped Scan 147

Cross block of 2 entries Q1
 Cross block entry 1
 Conjunct: TRIM (BOTH ' ' FROM 1.NUMTYP) = 'T_TYP'
 Index only retrieval of relation 1:T1
 Index name IDX_EMAP_1 [0:0]
 Cross block entry 2
 Leaf#01 NdxOnly 0:T2 Card=1671
 Bool: 0.TYP = 1.PID
 FgrNdx IDX_BSKT_0 [0:0] Fan=29
 BgrNdx1 IDX_BSKT_1 [1:1] Fan=48
 Keys: 0.TYP = 1.PID
 B.DETAIL
 2
 3
 11
3 rows selected

Dropping the foreground index also makes the query return correctly.

drop index IDX_BSKT_0;

set flags 'bitmapped_scan';
select distinct DETAIL from T2 B, T1 M
where B.TYP = M.PID and
 M.NUMTYP = 'T_TYP' ;

Tables:
 0 = T2
 1 = T1
Reduce: 0.DETAIL
Sort: 0.DETAIL(a)
Cross block of 2 entries Q1
 Cross block entry 1
 Conjunct: 1.NUMTYP = 'T_TYP'
 Index only retrieval of relation 1:T1
 Index name IDX_EMAP_1 [0:0]
 Cross block entry 2
 Leaf#01 NdxOnly 0:T2 Card=1671 Bitmapped scan
 Bool: 0.TYP = 1.PID
 BgrNdx1 IDX_BSKT_1 [1:1] Fan=48
 Keys: 0.TYP = 1.PID
 B.DETAIL
 2
 3
 11
3 rows selected

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.28 Query Runs Very Slow When Using Bitmapped Scan

Bug 10297647

In prior releases of Oracle Rdb, the following query runs very slow using Bitmapped Scan when one of the
joined tables contains over 6 million rows.

set flags 'bitmapped_scan';
select 1
from T1

Oracle® Rdb for OpenVMS

5.1.28 Query Runs Very Slow When Using Bitmapped Scan 148

where
 I_ASN is not null
 and I_MCAT is not null
 and not exists (select *
 from T2
 where T1.I_ASN = T2.I_ASN
 and T1.I_MCAT = T2.I_MCAT);
Tables:
 0 = T1
 1 = T2
Conjunct: <agg0> = 0
Match (Agg Outer Join) Q1
 Outer loop
 Match_Keys:0.I_MCAT, 0.I_ASN
 Sort: 0.I_MCAT(a), 0.I_ASN(a)
 Leaf#01 BgrOnly 0:T1 Card=6311566 Bitmapped scan
 Bool: NOT MISSING (0.I_ASN) AND NOT MISSING (0.I_MCAT)
 BgrNdx1 IX_DCAT_MCAT [0:1] Fan=39
 Keys: NOT MISSING (0.I_MCAT)
 BgrNdx2 IX_DCAT_ASN_TST_REC_TYP_A_V [0:1] Fan=42
 Keys: NOT MISSING (0.I_ASN)
 Inner loop
 Match_Keys:1.I_MCAT, 1.I_ASN
 Aggregate: 0:COUNT−ANY (<subselect>) Q2
 Sort: 1.I_MCAT(a), 1.I_ASN(a)
 Conjunct: NOT MISSING (1.I_MCAT)
 Leaf#02 BgrOnly 1:T2 Card=3325 Bitmapped scan
 Bool: NOT MISSING (1.I_ASN)
 BgrNdx1 IX_MCAT_ASN [0:1] Fan=39
 Keys: NOT MISSING (1.I_ASN)
 BgrNdx2 IX_MCAT_PK [0:1] Fan=39
 Keys: NOT MISSING (1.I_MCAT)
0 rows selected
show stat

 process statistics at 13−DEC−2010 11:32:55.44
 elapsed time = 0 00:01:08.14 CPU time = 0 00:00:04.37
 page fault count = 1061 pages in working set = 52928
 buffered I/O count = 81 direct I/O count = 8563
 open file count = 8 file quota remaining = 1992
 locks held = 149 locks remaining = 31851
 CPU utilization = 6.4% AST quota remaining = 995

Disabling bitmapped scan (SET FLAGS 'NOBITMAPPED_SCAN) eliminates the problem.

set flags 'nobitmapped_scan';
select 1
from TB_DCAT
where
 I_ASN is not null
 and I_MCAT is not null
 and not exists (select *
 from TB_MCAT
 where TB_DCAT.I_ASN = TB_MCAT.I_ASN
 and TB_DCAT.I_MCAT = TB_MCAT.I_MCAT);
Tables:
 0 = TB_DCAT
 1 = TB_MCAT
Conjunct: <agg0> = 0
Match (Agg Outer Join) Q1
 Outer loop
 Match_Keys:0.I_MCAT, 0.I_ASN

Oracle® Rdb for OpenVMS

5.1.28 Query Runs Very Slow When Using Bitmapped Scan 149

 Sort: 0.I_MCAT(a), 0.I_ASN(a)
 Leaf#01 BgrOnly 0:TB_DCAT Card=155000
 Bool: NOT MISSING (0.I_ASN) AND NOT MISSING (0.I_MCAT)
 BgrNdx1 IX_DCAT_MCAT [0:1] Fan=20
 Keys: NOT MISSING (0.I_MCAT)
 BgrNdx2 IX_DCAT_ASN_TST_REC_TYP_A_V [0:1] Fan=11
 Keys: NOT MISSING (0.I_ASN)
 Inner loop
 Match_Keys:1.I_MCAT, 1.I_ASN
 Aggregate: 0:COUNT−ANY (<subselect>) Q2
 Sort: 1.I_MCAT(a), 1.I_ASN(a)
 Conjunct: NOT MISSING (1.I_MCAT)
 Leaf#02 BgrOnly 1:TB_MCAT Card=3336
 Bool: NOT MISSING (1.I_ASN)
 BgrNdx1 IX_MCAT_ASN [0:1] Fan=20
 Keys: NOT MISSING (1.I_ASN)
 BgrNdx2 IX_MCAT_PK [0:1] Fan=20
 Keys: NOT MISSING (1.I_MCAT)
0 rows selected
show stat

 process statistics at 13−DEC−2010 11:31:47.29
 elapsed time = 0 00:01:48.09 CPU time = 0 00:00:01.72
 page fault count = 49 pages in working set = 35584
 buffered I/O count = 114 direct I/O count = 8655
 open file count = 8 file quota remaining = 1992
 locks held = 149 locks remaining = 31851
 CPU utilization = 1.5% AST quota remaining = 995

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.29 Query With "NOT (conj1 OR conj2 OR conj3)"
Predicate Bugchecks

Bug 11850015

In prior releases of Oracle Rdb, the following query with "NOT (conj1 OR conj2 OR conj3)" bugchecks at
setup_for_no_get.

select * from all_cat where
 t_type <> 'SEQ' and t_type <> 'SYN' and
 not (owner = 'MSYS' OR owner = 'OSYS' OR owner = 'WSYS');
%RDMS−I−BUGCHKDMP, generating bugcheck dump file _[directory]RDSBUGCHK.DMP;

This query worked in Oracle Rdb Release 7.2.4.1 and started breaking in Oracle Rdb Release 7.2.4.2 due to a
fix for Bug 9509316.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.30 Query Returns Wrong Results Using Bitmap Scan
With Zigzag Match

Bug 8344512

Oracle® Rdb for OpenVMS

5.1.29 Query With "NOT (conj1 OR conj2 OR conj3)" Predicate Bugchecks 150

When bitmapped scan is used on sorted ranked indices, this metadata query returns no results.

Tables:
 0 = RDB$CONSTRAINT_RELATIONS
 1 = RDB$CONSTRAINTS
 2 = RDB$RELATION_CONSTRAINTS
Reduce: 0.RDB$CONSTRAINT_NAME
Cross block of 2 entries Q1
 Cross block entry 1
 Conjunct: 1.RDB$CONSTRAINT_NAME = 0.RDB$CONSTRAINT_NAME
 Match Q1
 Outer loop (zig−zag)
 Match_Key:0.RDB$CONSTRAINT_NAME
 Index_Key:RDB$CONSTRAINT_NAME
 Leaf#01 Sorted 0:RDB$CONSTRAINT_RELATIONS Card=8 Bitmapped scan
 Bool: 0.RDB$RELATION_NAME = <var0>
 FgrNdx RDB$CR_CONSTRAINT_NAME_NDX [0:0] Fan=8
 BgrNdx1 RDB$CR_REL_NAME_NDX [1:1] Fan=8
 Keys: 0.RDB$RELATION_NAME = <var0>
 Inner loop (zig−zag)
 Match_Key:1.RDB$CONSTRAINT_NAME
 Index_Key:RDB$CONSTRAINT_NAME
 Get Retrieval by index of relation 1:RDB$CONSTRAINTS
 Index name RDB$CON_CONSTRAINT_NAME_X [0:0]
 Cross block entry 2
 Conjunct: <agg0> = 0
 Aggregate−F1: 0:COUNT−ANY (<subselect>) Q2
 Index only retrieval of relation 2:RDB$RELATION_CONSTRAINTS
 Index name RDB$RLC_CONSTRAINT_NAME_NDX [1:1] Direct lookup
 Keys: 1.RDB$CONSTRAINT_NAME = 2.RDB$CONSTRAINT_NAME

This script works with SORTED index:

set verify;
drop database
 filename pers;
import database
 from 'test$db_source:personnel_sql'
 filename 'pers'
 system index (type is sorted);
set flags 'strategy,detail(2)';
show table (constraint) employees
disconnect all;

This script fails with RANKED index:

set verify;
drop database
 filename pers;
import database
 from 'test$db_source:personnel_sql'
 filename 'pers'
 system index (type is sorted ranked);
set flags 'bitmapped_scan,strategy,detail(2)';
show table (constraint) employees
disconnect all;

The problem can also be reproduced using either RDO or SQL, as can be seen in the following scripts:

FOR

Oracle® Rdb for OpenVMS

5.1.29 Query With "NOT (conj1 OR conj2 OR conj3)" Predicate Bugchecks 151

 CR IN Rdb$CONSTRAINT_RELATIONS
 CROSS C IN Rdb$CONSTRAINTS
 OVER Rdb$CONSTRAINT_NAME
 WITH CR.Rdb$RELATION_NAME = 'EMPLOYEES' AND
 NOT ANY RC IN RdbVMS$RELATION_CONSTRAINTS
 WITH C.RDB$CONSTRAINT_NAME = RC.RDB$CONSTRAINT_NAME
print C.Rdb$CONSTRAINT_NAME
 ,C.Rdb$CONSTRAINT_SOURCE
END_FOR

SQL script:

select C.Rdb$CONSTRAINT_NAME,C.Rdb$CONSTRAINT_SOURCE
 FROM Rdb$CONSTRAINT_RELATIONS CR
 JOIN
 Rdb$CONSTRAINTS C
 ON CR.Rdb$CONSTRAINT_NAME = C.Rdb$CONSTRAINT_NAME
 where
 CR.Rdb$RELATION_NAME = 'EMPLOYEES' AND
 NOT EXISTS
 (select * from RdbVMS$RELATION_CONSTRAINTS RC
 where C.RDB$CONSTRAINT_NAME = RC.RDB$CONSTRAINT_NAME);

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.1.31 Query With Over 26 Million Rows Slows Down

Bug 9454843

In prior releases of Oracle Rdb, a query became very slow due to a million blocks being allocated for a sort
that is done repeatedly that usually involves only a handful of records.

One of the tables has over 26 million rows, but there are nearly 6 million values for DEBT_ID so the average
number of rows to sort is under 5.

The following is the simplified version of the query.

select *
from
 DEBT as C2,
 DEBT as C33
 left outer join
 (select C36.DEBT_ID, C36.TRANSACTION_ID, sum(
 C36.CURRENT_BALANCE_AMOUNT)
 from BALANCE_HISTORY C36
 group by C36.DEBT_ID, C36.TRANSACTION_ID)
 as C34 (F1, F2, F3)
 on (C34.F1 = C33.DEBT_ID)
 and (C34.F2 = (select C52.TRANSACTION_ID from
 BALANCE_HISTORY C52
 where (((C52.DEBT_ID = C33.DEBT_ID)
 and (C52.BALANCE_TYPE_CODE = 'DBC'))
)
 order by C52.CHANGE_TIME desc
 limit to 1 rows))
 where
 (C33.DEBT_ID = C2.DEBT_ID);
Tables:

Oracle® Rdb for OpenVMS

5.1.31 Query With Over 26 Million Rows Slows Down 152

 0 = DEBT
 1 = DEBT
 2 = BALANCE_HISTORY
 3 = BALANCE_HISTORY
Conjunct: 1.DEBT_ID = 0.DEBT_ID
Match Inner_TTBL Q1
 Outer loop (zig−zag)
 Match_Key:0.DEBT_ID
 Index_Key:DEBT_ID
 Get Retrieval by index of relation 0:DEBT
 Index name DEBT_PK [0:0]
 Inner loop
 Match_Key:1.DEBT_ID
 Temporary relation
 Cross block of 2 entries (Left Outer Join) Q4
 Cross block entry 1
 Cross block of 2 entries Q6
 Cross block entry 1
 Get Retrieval by index of relation 1:DEBT
 Index name DEBT_PK [0:0]
 Cross block entry 2
 Aggregate: 0:VIA (3.TRANSACTION_ID) Q5
 Firstn: 1
 Sort: 3.CHANGE_TIME(d)
 SortId# 4., # Keys 2
 Item# 1, Dtype: 2, Order: 1, Off: 0, Len: 1
 Item# 2, Dtype: 35, Order: 1, Off: 1, Len: 8
 LRL: 40, NoDups:0, Blks:64423, EqlKey:0, WkFls: 2
 Leaf#01 BgrOnly 3:BALANCE_HISTORY Card=26384512
 Bool: (3.DEBT_ID = 1.DEBT_ID) AND (3.BALANCE_TYPE_CODE = 'DBC')
 BgrNdx1 BALANCE_HISTORY_PK [2:2] Fan=9
 Keys: (3.DEBT_ID = 1.DEBT_ID) AND (3.BALANCE_TYPE_CODE = 'DBC')
 Cross block entry 2
 Conjunct: 2.DEBT_ID = 1.DEBT_ID
 Merge of 1 entries Q4
 Merge block entry 1 Q2
 Aggregate: 1:SUM (2.CURRENT_BALANCE_AMOUNT) Q3
 Sort: 2.DEBT_ID(a), 2.TRANSACTION_ID(a)
 SortId# 5., # Keys 4
 Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1
 Item# 2, Dtype: 8, Order: 0, Off: 1, Len: 4
 Item# 3, Dtype: 2, Order: 0, Off: 5, Len: 1
 Item# 4, Dtype: 8, Order: 0, Off: 6, Len: 4
 LRL: 32, NoDups:0, Blks:1000000, EqlKey:0, WkFls: 2
 Leaf#02 BgrOnly 2:BALANCE_HISTORY Card=26384512
 BgrNdx1 BALANCE_HISTORY_PK [1:1] Fan=9
 Keys: 2.DEBT_ID = 1.DEBT_ID
0 rows selected

This problem has been corrected in Oracle Rdb Release 7.2.5.

Oracle® Rdb for OpenVMS

5.1.31 Query With Over 26 Million Rows Slows Down 153

5.2 SQL Errors Fixed

5.2.1 Unexpected Bugcheck When Using INSERT ... SELECT
Into a View

Bug 9383578

In prior releases of Oracle Rdb, it was possible that using INSERT ... SELECT into a view based on another
view would generate a bugcheck dump. This occurred when the base table contained DEFAULT values for
some columns.

The following example shows the error reported by a customer.

%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RDSBUGCHK.DMP;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RDSBUGCHK.DMP;
%RDB−E−INVALID_BLR, request BLR is incorrect at offset 1041
−RDMS−E−UNKNOWN_VAR, unknown variable 2 found in the query string

This problem could also occur when an INSERT was contained in a FOR cursor loop in a compound
statement.

This problem has been corrected in Oracle Rdb Release 7.2.5. Rdb now correctly determines the context for
the nested table when processing the DEFAULT value or AUTOMATIC INSERT AS values for a base table
referenced by nested views.

5.2.2 Warning Now Issued for Unsupported Character
Operations

This release of Oracle Rdb changes the behavior of the LIKE ... IGNORE CASE, UPPER and LOWER
functions in the cases where they are applied to character string expressions with a character set that does not
support casing (upper and lower case equivalent characters).

In previous versions of Oracle Rdb, UPPER and LOWER were accepted for these character sets but they are
now ignored by SQL. That is, the UPPER and LOWER functions are discarded if the character set does not
have upper and lower case characters. This would be applicable to a character set such as KANJI.

In previous versions LIKE ... IGNORE CASE would cause the query to fail if the character string expressions
did not support casing. SQL now ignores this clause with an issued warning.

The following example shows the issued warnings.

SQL> create table kan (a char(10) character set kanji);
SQL> select * from kan where a like _kanji'aa' ignore case;
%SQL−W−NOCASING, IGNORE CASE not supported for character set KANJI − ignored
0 rows selected
SQL> select * from kan where upper(a) = _kanji'aa';
%SQL−W−NOCASING, UPPER not supported for character set KANJI − ignored
0 rows selected
SQL> select * from kan where lower(a) = _kanji'aa';

5.2 SQL Errors Fixed 154

%SQL−W−NOCASING, LOWER not supported for character set KANJI − ignored
0 rows selected
SQL> rollback;

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.2.3 Incorrect Results From LIKE ... IGNORE CASE

In prior releases of Oracle Rdb, the LIKE ... IGNORE CASE predicate could return the wrong results if the
pattern string included the "*" character.

The following example shows the incorrect results from LIKE ... IGNORE CASE. The LIKE ... IGNORE
CASE example should have returned only two rows.

SQL> create table like_test
cont> (TEXT varchar(10)
cont>);
SQL> insert into like_test (TEXT) values ('abc');
1 row inserted
SQL> insert into like_test (TEXT) values ('abc*');
1 row inserted
SQL> insert into like_test (TEXT) values ('ABC');
1 row inserted
SQL> insert into like_test (TEXT) values ('ABC*');
1 row inserted
SQL>
SQL>
SQL> select * from like_test;
 TEXT
 abc
 abc*
 ABC
 ABC*
4 rows selected
SQL>
SQL> −− An ordinary, case sensitive, LIKE gets the proper results:
SQL>
SQL> select * from like_test where text like 'a%*%';
 TEXT
 abc*
1 row selected
SQL>
SQL> −− But when you IGNORE CASE things get weird:
SQL>
SQL> select * from like_test where text like 'a%*%' ignore case;
 TEXT
 abc
 abc*
 ABC
 ABC*
4 rows selected
SQL>
SQL> rollback;

Additionally, LIKE ... IGNORE CASE was ignoring diacritial markings, contrary to the LIKE documentation.

At the same time, several restrictions previously in place for this predicate have been removed.

Oracle® Rdb for OpenVMS

5.2.3 Incorrect Results From LIKE ... IGNORE CASE 155

SQL> select * from like_test where text like pattern || '%' ignore case;
%SQL−F−BADCOLIGNCAS, The LIKE pattern is incompatible with IGNORE CASE
SQL> select * from like_test where text like pattern ignore case;
%SQL−F−BADCOLIGNCAS, The LIKE pattern is incompatible with IGNORE CASE
SQL> declare :pat varchar(10) = 'a%*%';
SQL> begin
cont> for :l as select *
cont> from like_test
cont> where text like :pat ignore case
cont> do
cont> trace :l.text;
cont> end for;
cont> end;
%SQL−F−MSP_LIKE_XLATE, Translation of LIKE pattern string not supported in a
compound statement

The predicate pattern can now be any expression (including a column reference) and may be used within a
compound statement.

Oracle Rdb now supports a more general LIKE ... IGNORE CASE implementation which corrects these
problems and lifts these restrictions.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.2.4 Unexpected ACCVIO When Using Dynamic DECLARE
Cursor Statement

Bug 9166313

In prior releases of Oracle Rdb, if a database or a user had transaction modes restricted to READ ONLY, it
was possible for the SQL dynamic DECLARE of a list cursor to fail with an ACCVIO.

Declare list cursor SQLCODE = −1
 ** The parameter value returned is: 8347456
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=000000000000001C, PC=00000000005851AC, PS=0000001B

A database can be altered to allow only READ ONLY transactions, as shown in this example:

alter database
 filename PERSONNEL
 set transaction modes (read only);

All users of such a database could see this problem when using dynamically declared cursors such as those
used by ODBC, JDBC, SQL/Services or OCI Services for Rdb.

A single user can be assigned a profile that restricts the transactions to READ ONLY, as shown in this
example:

create profile RO_PROFILE
 default transaction READ ONLY
 transaction modes (READ ONLY);

create user SAMPLE_USER
 identified externally

Oracle® Rdb for OpenVMS

5.2.4 Unexpected ACCVIO When Using Dynamic DECLARE Cursor Statement 156

 profile RO_PROFILE;

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.2.5 Incorrect Value Returned By RETURNING Clause of
the INSERT Statement

Bug 10008867

In prior releases of Oracle Rdb, it was possible that using the RETURNING clause of the INSERT statement
would evaluate an AUTOMATIC AS expression a second time, once for the INSERT and again if they were
returned by the RETURNING clause. This could be problematic if the expression called a function that had
side effects, such as updating the SEQUENCE, or performing some external action.

The following example shows that the value returned by the RETURNING clause is different from what was
actually inserted.

SQL> declare :v1 integer;
SQL> declare :v1_ind integer;
SQL>
SQL> create sequence s1;
SQL>
SQL> create module m1
cont> language SQL
cont>
cont> function f1()
cont> returns integer
cont> not deterministic;
cont> return s1.nextval;
cont>
cont> end module;
SQL>
SQL> create table t1
cont> (c1 automatic insert as f1()
cont> ,c2 char(10));
SQL>
SQL>insert into t1 (c2) values ('test1') returning c1 into :v1 indicator
:v1_ind;
1 row inserted
SQL> print :v1 indicator :v1_ind;
 V1
 2
SQL> select c1 from t1;
 C1
 1
1 row selected
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.2.6 Unexpected Failure When Adding IDENTITY Columns

In previous releases of Oracle Rdb, using a delimited table name could cause the CREATE or ALTER
TABLE statement to fail when an IDENTITY column was defined.

Oracle® Rdb for OpenVMS

5.2.5 Incorrect Value Returned By RETURNING Clause of the INSERT Statement 157

The following example shows this problem.

SQL> CREATE TABLE "Emps" (
cont> "Id" int IDENTITY PRIMARY KEY ,
cont> "Name" NCHAR VARYING(2000)
cont>);
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−E−SEQNEXTS, sequence "Emps" does not exist in this database
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5. Oracle Rdb was incorrectly uppercasing the
name of the identity sequence.

5.2.7 Unexpected Bugcheck Dump Produced When UNION
and GROUP BY Are Used

Bug 9952060

In prior releases of Oracle Rdb, it was possible in rare cases to have a bugcheck dump produced when a
UNION also included a GROUP BY. The ON clause of a JOIN needs to reference the same GROUP BY
expression in a subsequent UNION branch.

The following example shows the problem. The ON clause in the second part of the UNION uses the same
GROUP BY expression as the first part of the UNION.

SQL> select substring (jh.employee_id from 1 for 5)
cont> FROM job_history jh
cont> JOIN salary_history sh
cont> ON sh.employee_id = substring (jh.employee_id from 1 for 5)
cont> GROUP BY substring (jh.employee_id from 1 for 5)
cont> UNION ALL
cont> SELECT substring (jh.employee_id from 1 for 5)
cont> FROM job_history jh
cont> JOIN salary_history sh
cont> ON sh.employee_id = substring (jh.employee_id from 1 for 5)
cont> GROUP BY substring (jh.employee_id from 1 for 5)
cont> ;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]SQLBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=00000000000000D4, PC=FFFFFFFF8027E8C1, PS=0000001B

This problem has been corrected in Oracle Rdb Release 7.2.5. SQL now correctly processes the ON clause in
these cases.

5.2.8 SET EXECUTE Now Implicitly Executed When
ROLLBACK Question Is Asked

In prior versions of Oracle Rdb, Interactive SQL would ask if you wished to ROLLBACK any changes made
to the database prior to exiting. However, if the command SET NO EXECUTE had previously been executed,
any such ROLLBACK was ignored. With this release of Rdb, a SET EXECUTE is implicitly executed before
returning control back to Interactive SQL. Therefore, any commands executed to terminate the session will be
executed.

Oracle® Rdb for OpenVMS

5.2.7 Unexpected Bugcheck Dump Produced When UNION and GROUP BY Are Used 158

The following example shows this.

SQL> set no execute;
SQL>
SQL> select * from tt;
0 rows selected
SQL> exit
There are uncommitted changes to this database.
Would you like a chance to ROLLBACK these changes (No)? y
SQL> select * from tt;
 A
 NULL
1 row selected
SQL> rollback;

5.2.9 Unexpected Bugcheck When Accessing View Changed
Using the ALTER VIEW Statement

In prior releases of Oracle Rdb, the ALTER VIEW command may set the column RDB$DBKEY_LENGTH
in the system table RDB$RELATIONS to the wrong value. This may lead to a bugcheck with a footprint
similar to the one shown here.

SYSTEM−F−ACCVIO, access violation•
Exception occurred at RDMSHRP721\RDMS$$PRE_EXECUTION + 000002F1•
Called from RDMSHRP721\RDMS$$COMPILE_FOR_IF + 00004340•
Called from RDMSHRP721\RDMS$$COMPILE_STMT + 000014C0•
Called from RDMSHRP721\RDMS$$COMPILE_STMT + 00000440•

The VIEW definition can be removed using the DROP VIEW statement and then recreated using the
CREATE VIEW statement, or you can repeat the ALTER VIEW statement after this release has been
installed.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.2.10 Unexpected CAPTIVEACCT Error When Using Spawn
Directive in Interactive SQL for RESTRICTED Accounts

Bug 10353927

In prior releases of Oracle Rdb, an account marked as RESTRICTED was not permitted to execute the
SPAWN directive in Interactive SQL. The result is shown in the following example:

SQL> $ show time
%COSI−F−CAPTIVEACCT, captive account − can't create sub−process
SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5. Interactive SQL no longer treats the OpenVMS
UAF flags CAPTIVE and RESTRICTED as identical. As described by the OpenVMS documentation, a
RESTRICTED account may still access DCL. This change brings interactive SQL into conformance with
other OpenVMS utilities such as MAIL or EDIT/TPU which allow SPAWN actions.

Oracle® Rdb for OpenVMS

5.2.9 Unexpected Bugcheck When Accessing View Changed Using the ALTER VIEW Statement159

5.2.11 Unexpected NOTRIGRTN Error When Trigger Calls a
Procedure Using LOCK TABLE Statement

Bug 11789653

In prior releases of Oracle Rdb, attempts to create a trigger that called a stored procedure which used the
LOCK TABLE statement would fail with the error NOTRIGRTN "this stored routine may not be called from
a trigger". The following example shows this problem.

SQL> create module MY_MODULE
cont> language SQL
cont>
cont> procedure MY_PROC
cont> (in :IN_ID CHAR(5)
cont>);
cont> begin
cont> declare :EMP_ID CHAR(5);
cont>
cont> lock table SALARY_HISTORY for PROTECTED WRITE mode;
cont>
cont> for :EMP_REC
cont> as each row of table cursor EMP_CURSOR for
cont> select EMPLOYEE_ID, LAST_NAME, FIRST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID = :IN_ID
cont> do
cont> set :EMP_ID = :EMP_REC.EMPLOYEE_ID;
cont> insert into SALARY_HISTORY
cont> values (:EMP_ID, 100.00, current_timestamp, null);
cont> end for;
cont> end;
cont> end module;
SQL>
SQL> create trigger DEGREE_UPDATE
cont> after UPDATE of DEGREE on DEGREES
cont> referencing OLD as ODEG NEW as NDEG
cont> (call MY_PROC (NDEG.EMPLOYEE_ID))
cont> for each row;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−RTN_FAIL, routine "MY_PROC" failed to compile or execute successfully
−RDMS−E−NOTRIGRTN, this stored routine may not be called from a trigger
SQL>

The only statements which should cause this error are: SET TRANSACTION, START TRANSACTION,
COMMIT, COMMIT AND CHAIN, ROLLBACK and ROLLBACK AND CHAIN.

This problem has been corrected in Oracle Rdb Release 7.2.5. However, the procedure which references the
LOCK TABLE statement will need to be recreated before it can be referenced by the trigger definition.

5.2.12 Unexpected Bugchecks When Some Undocumented
Syntax Used

Bugs 3949015, 7413895, and 7655283

Oracle® Rdb for OpenVMS

5.2.11 Unexpected NOTRIGRTN Error When Trigger Calls a Procedure Using LOCK TABLE Statement160

In prior releases of Oracle Rdb, the incomplete and undocumented SIMILAR TO operator generated a
bugcheck when used. This prototype code was erroneously included in the production release.

This problem has been corrected in Oracle Rdb Release 7.2.5. References will now generate a WISH_LIST
error.

SQL> select * from employees where last_name similar to 'S[a−z]*';
%RDB−F−WISH_LIST, feature has not been implemented
SQL>

5.2.13 Unexpected Slow Performance for Query Using SQL
Functions

Bug 9112403

In prior releases of Oracle Rdb, a query might exhibit slow performance on the first execution in a session.
This occurred when a SQL function was called that contained only constant literal arguments, for instance,
TO_DATE('20080625194943','YYYYMMDDHH24MISS'). In such cases, the function has not been
compiled and therefore cannot be used to resolve column value for the optimizer. Rdb would then assume that
the function was NOT DETERMINISTIC and thus execute the function for every row in the table.
Subsequent executions of the same or similar query would perform better because the function, now
compiled, could be removed from the main loop and executed just once.

This problem has been corrected in Oracle Rdb Release 7.2.5. The Oracle Rdb query compiler now
pre−processes queries to extract and compile any referenced SQL functions. This allows their execution
during the compile phase for the query.

A workaround to this problem for older releases is to perform a simple query to load and compile the function
prior to execution of the main query, as in the following example.

EXEC SQL
 begin
 declare :dt date;
 set :dt = TO_DATE('20080625194943','YYYYMMDDHH24MISS');
 end;

Oracle® Rdb for OpenVMS

5.2.13 Unexpected Slow Performance for Query Using SQL Functions 161

5.3 RDO and RDML Errors Fixed

5.3.1 Duplicate Values Generated For IDENTITY Column
When RDO Interface Used For STORE

Bug 11804365

In prior releases of Oracle Rdb, it was possible that an RDBPRE (RDO) application would insert duplicate
values for an IDENTITY column.

The following example shows that a STORE statement nested in a FOR loop was treated as a single statement
when generating the IDENTITY sequence's next value (NEXTVAL). Naturally, neither RDO nor RdbPRE
Pre−compiler establish SQL semantics.

RDO> for o in OUTER_T
cont> store i in INNER_T using
cont> i.tag = 1
cont> end_store
cont> store i in INNER_T using
cont> i.tag = 2
cont> end_store
cont> end_for
RDO>
RDO> for i in INNER_T
cont> print i.ident_column, i.tag
cont> end_for
 IDENT_COLUMN TAG
 1 1
 1 2
RDO>

However, the definition of an IDENTITY column is independent of the interface used and should be
evaluated for each STORE statement.

This problem has been corrected in Oracle Rdb Release 7.2.5. Oracle Rdb now detects that an IDENTITY
sequence is used by a STORE statement and updates it correctly.

Note

Semantics described for the SQL language related to sequences are not present in the RDO
language. Therefore, an RDO or RdbPRE Pre−compiler application may not behave in the
same way as a similar SQL, SQL Module Language, or SQL Pre−compiler application. For
instance, a table that has an AUTOMATIC INSERT AS column that evaluates a
sequence's NEXTVAL will not be updated within a similar FOR loop to the example shown
above.

5.3 RDO and RDML Errors Fixed 162

5.4 RMU Errors Fixed

5.4.1 RMU/UNLOAD to XML Does Not Replace Special
Characters

Bug 9597122

When using RMU/UNLOAD to create an XML file, certain special characters were being inserted as the
actual character, not as an XML special character sequence. These special characters include & < > ' and ".

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.4.2 RMU/RESTORE Could Fail When
/BLOCKS_PER_PAGE Was Specified

Bug 8869988

The /BLOCKS_PER_PAGE qualifier can be specified with the Oracle Rdb RMU/RESTORE command to
specify a new page size for a database storage area. There was a problem where the restore of a uniform
storage area could fail when a new /BLOCKS_PER_PAGE value was specified. The logical area page clump
lists on the uniform area spam pages could be corrupted when a new BLOCKS_PER_PAGE value was
specified. Pages could be assigned to the wrong logical area in a page clump list if RMU/RESTORE tried to
change the clumps per page value on the spam pages in the uniform area based on the new page size. For the
RMU/RESTORE of uniform areas, the spam page clumps per page value cannot be changed during an
RMU/RESTORE.

This problem resulted in error messages during the restore due to pages being assigned to the wrong logical
areas as well as fatal errors and bugcheck dumps due to the invalid spam pages. An RMU/VERIFY of the
uniform storage areas would also report logical area errors due to the spam page corruption.

This problem has been fixed. Now if a new BLOCKS_PER_PAGE value is specified for the
RMU/RESTORE of a uniform storage area, RMU/RESTORE will never change the clumps per page value for
the SPAM pages in that area. Also, new checks have been added to RMU/RESTORE to return an error and
terminate an RMU/RESTORE at the start of the restore if a new BLOCKS_PER_PAGE value is specified for
a uniform area that would cause database corruption. The user can then repeat the RMU/RESTORE either
without specifying a new BLOCKS_PER_PAGE value or by specifying a BLOCKS_PER_PAGE value
which RMU/RESTORE will accept since it will not cause database corruption of the uniform storage area.

The following example shows the problem. RMU/RESTORE would put out logical area diagnostics for the
logical areas in uniform storage areas for which a new BLOCKS_PER_PAGE value was specified and a fatal
error would usually result which could vary but would be related to the corrupted spam pages. Usually a fatal
error would result in a bugcheck dump file being created. Note that this problem only happened if
RMU/RESTORE decided to change the spam page clumps per page value based on the new blocks per page
value, otherwise the restore succeeded and did not put out logical area errors or corrupt the spam pages.

$ RMU/RESTORE/LOG/NOCDD/NORECOVER/DIR=SYS$DISK:[] −
 /OPTIONS=SYS$INPUT TEST_DATABASE.RBF

5.4 RMU Errors Fixed 163

AREA1/BLOCKS_PER_PAGE=16
AREA2/BLOCKS_PER_PAGE=16
%RMU−I−AIJRSTBEG, restoring after−image journal "state" information
%RMU−I−AIJRSTEND, after−image journal "state" restoration complete
%RMU−I−RESTXT_00, Restored root file
 DISK:[DIRECTORY]TEST_DATABSE.RDB;1
%RMU−I−RESTXT_18, Processing options file SYS$INPUT
area1/blocks_per_page=16
 area1/blocks_per_page=16
area2/blocks_per_page=16
 area2/blocks_per_page=16
%RMU−I−RESTXT_21, Starting full restore of storage area
 (RDB$SYSTEM) DISK:[DIRECTORY]SYS.RDA;1
 at 24−JUN−2010 15:48:24.05
%RMU−I−RESTXT_21, Starting full restore of storage area
 (AREA1) DISK:[DIRECTORY]AREA1.RDA;1
 at 24−JUN−2010 15:48:24.18
%RMU−W−BADPTLARE, invalid larea for uniform data page 5 in storage
area 8
%RMU−W−BADPTLAR2, SPAM larea_dbid: 97, page
larea_dbid: 117
%RMU−W−BADPTLARE, invalid larea for uniform data page 11 in storage
area 8
%RMU−W−BADPTLAR2, SPAM larea_dbid: 97, page
larea_dbid: 117
%RMU−W−BADPTLARE, invalid larea for uniform data page 719 in storage
area 8
%RMU−W−BADPTLAR2, SPAM larea_dbid: 117, page
larea_dbid: 97
%RMU−I−RESTXT_24, Completed full restore of storage area (RDB$SYSTEM)
DISK:[DIRECTORY]SYS.RDA;1 at 24−JUN−2010 15:48:26.49
%RMU−I−RESTXT_24, Completed full restore of storage area (AREA1)
DISK:[DIRECTORY]PMR_DATA.RDA;1 at 24−JUN−2010 15:48:40.03
%SYSTEM−F−ROPRAND, reserved operand fault at PC=00000000802C1642,
PS=0000001B
%RMU−I−BUGCHKDMP, generating bugcheck dump file
DISK:[DIRECTORY]RMUBUGCHK.DMP;
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 24−JUN−2010
15:48:43.18

The following example shows the new error messages which can now be returned if a BLOCKS_PER_PAGE
value is specified with the RMU/RESTORE command which will cause database corruption for a uniform
storage area.

$ RMU/RESTORE/LOG/NOCDD/NORECOVER/DIR=SYS$DISK:[]−
 DISK:[DIRECTORY]TEST_DATABASE.RBF −
AREA1/BLOCKS_PER_PAGE=63, AREA2/BLOCKS_PER_PAGE=63
RMU−I−AIJRSTBEG, restoring after−image journal "state" information
%RMU−I−AIJRSTEND, after−image journal "state" restoration complete
%RMU−I−RESTXT_00, Restored root file
 DISK:[DIRECTORY]TEST_DATABASE.RDB;1
%RMU−W−CLMPPGCNT, the clump page count multiplied by the number of
 blocks
%RMU−W−CLMPPGCN2, per page is greater than the
 maximum of 64 blocks
 %RMU−W−CLMPPGCN3, Computed: 189. CLUMP_PAGCNT = 3;
 PAG_BLKCNT = 63
%RMU−F−BDCLMPPGCNT, The specified BLOCKS_PER_PAGE value would cause
 an illegal clump page count for storage area
 DISK:[DIRECTORY]AREA1.RDA;1

Oracle® Rdb for OpenVMS

5.4 RMU Errors Fixed 164

%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 2−JUL−2010
 14:07:03.74
$ RMU/RESTORE/LOG/NOCDD/NORECOVER/DIR=SYS$DISK:[] −
 /OPTIONS=SYS$INPUT DISK:[DIRECTORY]MFP.RBF
MF_PERS_SEGSTR/BLOCKS_PER_PAGE=8
%RMU−I−AIJRSTBEG, restoring after−image journal "state" information
%RMU−I−AIJRSTEND, after−image journal "state" restoration complete
%RMU−I−RESTXT_00, Restored root file
 DISK:[DIRECTORY]MF_PERSONNEL.RDB;1
 %RMU−I−RESTXT_18, Processing options file SYS$INPUT
MF_PERS_SEGSTR/blocks_per_page=8
 MF_PERS_SEGSTR/blocks_per_page=8
%RMU−F−BUFSMLPAG, The specified BLOCKS_PER_PAGE 8 exceeds the
 buffer size 6 for storage area
 DISK:[DIRECTORY]MF_PERS_SEGSTR.RDA;1
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 2−JUL−2010
 14:36:52.26

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.4.3 An Incremental Instead Of a Full Backup Could
Corrupt a Database

Bug 10021340

As documented in the Oracle Rdb Guide To Database Maintenance (see sections 7.5.2 and 7.5.3), a full
database backup, not an incremental backup, should be done after changing the physical and logical design of
an Oracle Rdb database. This includes major changes made to the structures of the database with the SQL
ALTER DATABASE statement. If an incremental backup is done instead of a full backup in such cases,
database corruption can occur when the incremental restore is later executed on the database.

Instead of just recommending in our documentation doing a full database backup in these cases to prevent
database corruption, we now will return an error and not execute the incremental backup if an incremental
backup instead of a full database backup is executed following certain major changes to the database that
could result in database corruption when the incremental restore is later executed. This will protect the
integrity of the database.

The following message will be output in such cases when the incremental backup is attempted.

$ RMU/BACKUP/INCREMENTAL/NOLOG MF_PERSONNEL MFP.RBF
%RMU−F−NOFULLBCK, no full backup of this database exists
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 19−AUG−2010
 17:17:07.03

The user should then do a full backup of the database. Note that the incremental backup will not be allowed
only in certain cases where major changes to the database have been made which could cause database
corruption later when the incremental restore is applied to the database. Once a full backup has been done in
such cases, subsequent incremental backups will succeed.

The following example shows one specific instance of the problem. In this particular case, a storage area N3
was added to the database FOO after the full database backup and then an incremental backup was done
instead of a full backup. This caused database corruption when the incremental restore was later applied to the
FOO database.

Oracle® Rdb for OpenVMS

5.4.3 An Incremental Instead Of a Full Backup Could Corrupt a Database 165

$ set def DIR1:[A1]
$ SQL
create data file foo
reserve 10 storage area
create storage area n1
create storage area n2
create storage area n4;
create table t11 (i1 int);
create storage map m11 for t11 store in n4;
insert into t11 values (123);
 1 row inserted
commit;
disconnect all;
alter data file foo drop storage area n2;
exit;
$ rmu/backup/nolog foo.rdb f1.rbf
$ SQL
alter data file foo
add storage area n3;
att 'fi foo';
create table t1 (i1 int);
create storage map m1 for t1 store in n3;
insert into t1 values (123);
1 row inserted
commit;
exit;
$ rmu/backup/incremental/nolog foo.rdb f2.rbf
$ set def DIR2:[A2]
$ rmu/restore/nocdd/noafter/norec/nolog/dir=dir2:[a2] −
 dir1:[a1]f1.rbf
$ rmu/restore/nocdd/log/norec/incremental/noconf/dir=dir2:[a2] −
 dir1:[a1]f2.rbf
%RMU−I−RESTXT_00, Restored root file DIR2:[A2]FOO.RDB;1
%RMU−I−RESTXT_22, Starting incremental restore of storage area
 (RDB$SYSTEM) DIR2:[A2]FOO.RDA;1 at 12−AUG−2010 11:05:10.16
%RMU−I−RESTXT_22, Starting incremental restore of storage area (N4)
 DIR2:[A2]N4.RDA;1 at 12−AUG−2010 11:05:10.16
%RMU−I−RESTXT_22, Starting incremental restore of storage area (N3)
 DIR2:[A2]N3.RDA;1 at 12−AUG−2010 11:05:10.17
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual
address=FFFFFFFFEB6BA336, PC=00000000003A0434, PS=0000001B
%RMU−I−BUGCHKDMP, generating bugcheck dump file
 SERDB_USER1:[HOCHULI]RMUBUGCHK.DMP;
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 12−AUG−2010
 11:05:10.28
$ rmu/verify/all foo.rdb
%RMU−F−INV_ROOT, database file has illegal format
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 12−AUG−2010
 11:05:10.32

The following example shows the new behavior using the above example. When the incremental backup is
attempted after the storage area is added, the incremental backup is not executed and the
RMU−F−NOFULLBCK error message is output because a full backup is required in this case. When the user
then does a full backup it succeeds. The user later does a full restore instead of a full restore followed by an
incremental restore and no corruption of the database occurs.

$ set def DIR1:[A1]
$ SQL
create data file foo
reserve 10 storage area

Oracle® Rdb for OpenVMS

5.4.3 An Incremental Instead Of a Full Backup Could Corrupt a Database 166

create storage area n1
create storage area n2
create storage area n4;
create table t11 (i1 int);
create storage map m11 for t11 store in n4;
insert into t11 values (123);
 1 row inserted
commit;
disconnect all;
alter data file foo drop storage area n2;
exit;
$ rmu/backup/nolog foo.rdb f1.rbf
$ SQL
alter data file foo
add storage area n3;
att 'fi foo';
create table t1 (i1 int);
create storage map m1 for t1 store in n3;
insert into t1 values (123);
1 row inserted
commit;
exit;
$ rmu/backup/incremental/nolog foo.rdb f2.rbf
%RMU−F−NOFULLBCK, no full backup of this database exists
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 12−AUG−2010
 11:04:07.03
$ rmu/backup/nolog foo.rdb f2.rbf
$ set def DIR2:[A2]
$ rmu/restore/nocdd/nolog/norec/noconf/dir=dir2:[a2] −
 dir1:[a1]f2.rbf
$ rmu/verify/all foo.rdb

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.4.4 RMU/BACKUP/AFTER Invalid Open Record With
Emergency AIJ Files

Bug 8943703

If RMU/BACKUP/AFTER was being executed to back up fixed AIJ files at a time when there was an
extremely heavy load on an Oracle Rdb database which caused the existing AIJ files to fill up so that
additional emergency fixed AIJ files had to be created and frequent switching between AIJ files was taking
place, an invalid OPEN record with an invalid sequnce number of "−1" and other incorrect fields could be
created in the backup AIJ file for one of the non−emergency AIJ files that was backed up. If the backed up
AIJ file was used later for an RMU/RECOVER of the database, the invalid sequence number would cause the
recovery to fail. Note that the invalid OPEN record was created in the backed up AIJ file, not in the live fixed
AIJ files.

This problem is fixed in Oracle Rdb Release 7.2.4.0 and all later 7.2.4 releases but was not documented in
previous 7.2.4 release notes. It happened because a flag in the database root for each AIJ file which indicates
that the AIJ file is currently being backed up, was being cleared too soon. This flag is checked by the AIJ
server code when switching between files and for other operations. If the fixed AIJ files were being heavily
used during the backup, this set up a small time window when the sequence number of the OPEN record of
the AIJ file currently being backed up could be reset to −1, to indicate that the AIJ file was not being currently
used, just before RMU/BACKUP/AFTER read the AIJ file OPEN record and copied it to the backup AIJ file.

Oracle® Rdb for OpenVMS

5.4.4 RMU/BACKUP/AFTER Invalid Open Record With Emergency AIJ Files 167

The following shows an example of the invalid open record when the AIJ backup file created by the
RMU/BACKUP/AFTER command was dumped.

$ RMU/BACKUP/AFTER_JOURNAL/NOLOG/NOQUIET mf_personnel.rdb mfpaipbck
$ RMU/DUMP/AFTER/NODATA/OUT=DUMP.LIS mfpaipbck
$ TYPE DUMP.LIS

60494/131589 TYPE=O, LENGTH=510, TAD=19−JUL−2010 14:35:51.53,
CSM=00

Database DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
Database timestamp is 19−JUL−2010 11:02:31.47
Facility is "RDMSAIJ ", Version is 721.0
Database version is 72.1
AIJ Sequence Number is −1
Last Commit TSN is 0:0
Synchronization TSN is 0:0
Journal created on VMS platform
Type is Normal (unoptimized)
Open mode is Initial
Journal was backed up on19−JUL−2010 14:35:49.15
Backup type is No−Quiet−Point
I/O format is Block

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.4.5 RMU/COLLECT OPTIMIZER Invalid Cardinality With
Vertical Record Partitioning

When the Oracle Rdb RMU/COLLECT OPTIMIZER command collected table cardinality statistics for tables
with VERTICAL RECORD PARTITIONING, where table column values are assigned to different storage
areas using a storage map, the cardinality was incorrectly incremented for each column partition. This caused
the cardinality statistic for that table to be too large and also caused any statistics calculated using that
cardinality value to be incorrect, such as the Row Clustering Factor. This has been fixed and the cardinality
and related statistics will now be correct for tables with vertical record partitioning.

The following shows an example of the problem. The table T1 in the Rdb FOO database is defined with
vertical record (column) partitioning. When the RMU/COLLECT OPTIMIZER command was run to collect
statistics for the database, an incorrect table cardinality (5 instead of 1) and an incorrect table row clustering
factor (3 instead of 15) were calculated for table T1. The row clustering factor was incorrect because it was
calculated based on the incorrect table cardinality.

$ SQL
 CREATE DATA FILE FOO
 CREATE STORAGE AREA A1 FILE A1
 CREATE STORAGE AREA A2 FILE A2
 CREATE STORAGE AREA A3 FILE A3
 CREATE STORAGE AREA A4 FILE A4
 CREATE STORAGE AREA A5 FILE A5;
 CREATE TABLE T1 (C1 INT, C2 INT, C3 INT, C4 INT, C5 INT);
 CREATE STORAGE MAP M1 FOR T1
 STORE COLUMNS (C1) IN A1
 STORE COLUMNS (C2) IN A2
 STORE COLUMNS (C3) IN A3
 STORE COLUMNS (C4) IN A4
 STORE COLUMNS (C5) IN A5;

Oracle® Rdb for OpenVMS

5.4.5 RMU/COLLECT OPTIMIZER Invalid Cardinality With Vertical Record Partitioning 168

 INSERT INTO T1 VALUES (1,2,3,4,5);
1 row inserted
 COMMIT;
 EXIT;
$ RMU/COLLECT OPTIMIZER FOO.RDB
Start loading tables... at 8−SEP−2010 11:44:28.31
Done loading tables.... at 8−SEP−2010 11:44:28.33
Start loading indexes... at 8−SEP−2010 11:44:28.33
Done loading indexes.... at 8−SEP−2010 11:44:28.33
Start collecting btree index stats... at 8−SEP−2010 11:44:28.37
Done collecting btree index stats.... at 8−SEP−2010 11:44:28.37
Start collecting table & hash index stats... at 8−SEP−2010 11:44:28.37
Done collecting table & hash index stats.... at 8−SEP−2010 11:44:28.37
Start collecting workload stats... at 8−SEP−2010 11:44:28.45
Maximum memory required (bytes) = 0
Done collecting workload stats.... at 8−SEP−2010 11:44:28.45
Start calculating stats... at 8−SEP−2010 11:44:28.46
Done calculating stats.... at 8−SEP−2010 11:44:28.46
Start writing stats... at 8−SEP−2010 11:44:28.49

−−

Optimizer Statistics collected for table : T1

 Cardinality : 5
 Row clustering factor : 3.0000000
Done writing stats.... at 8−SEP−2010 11:44:28.51

The following example shows that this problem has been fixed. The table T1 in the Rdb FOO database is
defined with vertical record (column) partitioning. When the RMU/COLLECT OPTIMIZER command is run
to collect statistics for the database, a correct table cardinality (1) and a correct table row clustering factor (15)
are calculated for table T1.

$ SQL
 CREATE DATA FILE FOO
 CREATE STORAGE AREA A1 FILE A1
 CREATE STORAGE AREA A2 FILE A2
 CREATE STORAGE AREA A3 FILE A3
 CREATE STORAGE AREA A4 FILE A4
 CREATE STORAGE AREA A5 FILE A5;
 CREATE TABLE T1 (C1 INT, C2 INT, C3 INT, C4 INT, C5 INT);
 CREATE STORAGE MAP M1 FOR T1
 STORE COLUMNS (C1) IN A1
 STORE COLUMNS (C2) IN A2
 STORE COLUMNS (C3) IN A3
 STORE COLUMNS (C4) IN A4
 STORE COLUMNS (C5) IN A5;
 INSERT INTO T1 VALUES (1,2,3,4,5);
1 row inserted
 COMMIT;
 EXIT;
$ RMU/COLLECT OPTIMIZER FOO.RDB
Start loading tables... at 8−SEP−2010 11:45:16.63
Done loading tables.... at 8−SEP−2010 11:45:16.69
Start loading indexes... at 8−SEP−2010 11:45:16.69
Done loading indexes.... at 8−SEP−2010 11:45:16.69
Start collecting btree index stats... at 8−SEP−2010 11:45:16.89
Done collecting btree index stats.... at 8−SEP−2010 11:45:16.89
Start collecting table & hash index stats... at 8−SEP−2010 11:45:16.89
Done collecting table & hash index stats.... at 8−SEP−2010 11:45:16.90
Start collecting workload stats... at 8−SEP−2010 11:45:17.01

Oracle® Rdb for OpenVMS

5.4.5 RMU/COLLECT OPTIMIZER Invalid Cardinality With Vertical Record Partitioning 169

Maximum memory required (bytes) = 0
Done collecting workload stats.... at 8−SEP−2010 11:45:17.02
Start calculating stats... at 8−SEP−2010 11:45:17.02
Done calculating stats.... at 8−SEP−2010 11:45:17.02
Start writing stats... at 8−SEP−2010 11:45:17.06

−−

Optimizer Statistics collected for table : T1

 Cardinality : 1
 Row clustering factor : 15.0000000
Done writing stats.... at 8−SEP−2010 11:45:17.07

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.4.6 RMU /RECOVER /ORDER_AIJ May Remove Required
Journal Files

Bug 10020166

In certain cases, it was possible for the /ORDER_AIJ qualifier on the RMU/RECOVER command to reject (or
"prune") required journals from the input journal list. This would most likely happen when all the following
occurred:

Performed an RMU /RECOVER using After−Image Journal (AIJ) backups;•
Recovered only a subset of the required journals;•
The last journal applied had unresolved or incomplete transactions;•

For example, suppose a database needed to be recovered, starting at AIJ VNO 10 using the following AIJ
backup journal files:

J1.AIJ (aij quiet_point backup) : OPEN_VNO=10, QUIET_VNO=10
J2.AIJ (aij noquiet_point backup) : OPEN_VNO=11, QUIET_VNO=10
J3.AIJ (aij noquiet_point backup) : OPEN_VNO=12, QUIET_VNO=11
J4.AIJ (aij quiet_point backup) : OPEN_VNO=13, QUIET_VNO=13

STEP 1) The DBA issues:

$ RMU/RECOVER/ORDER_AIJ/ROOT=MF_PERSONNEL J1,J2

Journals J1.AIJ (OPEN_VNO=10) and J2.AIJ (OPEN_VNO=11) are applied and the database root is updated
to show that RCVR_VNO 12 is the next journal to be applied. However, J2 had potentially unresolved
transactions since it was not closed at a quiet_point.

STEP 2) The DBA next issues:

$ RMU/RECOVER/ORDER_AIJ/ROOT=MF_PERSONNEL J3,J4

Since J3 (OPEN_VNO=12, QUIET_VNO=11) does not start at a quiet_point, recovery terminates with an
error:

RMU−F−AIJNORCVR, recovery must start with journal sequence 11

Oracle® Rdb for OpenVMS

5.4.6 RMU /RECOVER /ORDER_AIJ May Remove Required Journal Files 170

STEP 3) The DBA next issues:

$ RMU/RECOVER/ORDER_AIJ/ROOT=MF_PERSONNEL J1,J2,J3,J4

Normally, this would have been the optimal command for the recovery in this case but since the root had been
previously updated to show that VNO 12 is required to start recovery, /ORDER_AIJ would prune J1 and J2
and only attempt to recover journals J3 and J4, which would result in the same error as in STEP 2 above.

The workaround would be to not use /ORDER_AIJ when recovering with such a strategy.

This problem has been corrected in Oracle Rdb Release 7.2.5. Now when the DBA attempts STEP 1, the
root's OPEN_VNO will not be updated past the last known QUIET_POINT (VNO 10, in this case).

Note

When using AIJ backups for recovery, RMU/RECOVER must begin with a
QUIET_POINT backup. Oracle recommends that recovery terminate with an AIJ backup
that was closed at a QUIET_POINT (i.e. the next journal backed up was created by a
QUIET_POINT backup).

5.4.7 RMU/CONVERT Fails to Convert Databases With
Database−wide Collating Sequence

Bug 10125553

In prior versions of Oracle Rdb, it was possible that databases created with a database−wide collating
sequence would not be converted correctly to Oracle Rdb V7.2.

The following example shows the problem where the database was created using the following definition:

create database
 filename BAD
 protection is ACL
 collating sequence GERMAN
;
disconnect all;

The RMU/CONVERT would proceed in a similar manner to the following example.

$ RMU/CONVERT BAD /NOCONFIRM
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.2−411 on OpenVMS Alpha
V8.3−1H1
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−S−CVTDBSUC, database USER1:[TESTING]BAD.RDB;1 successfully converted from
version V7.1 to V7.2
%RMU−I−CVTCOMSUC, CONVERT committed for USER1:[TESTING]BAD.RDB;1 to version V7.2
%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−RELNOEXI, relation RDB$DATABASE does not exist in this database
%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−RELNOEXI, relation RDB$DATABASE does not exist in this database

Oracle® Rdb for OpenVMS

5.4.7 RMU/CONVERT Fails to Convert Databases With Database−wide Collating Sequence 171

If this occurs, Oracle recommends restoring the database from backup and using SQL EXPORT DATABASE
and IMPORT DATABASE under Rdb V7.2, or installing this corrected version prior to performing
RMU/CONVERT.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.4.8 RMU/CONVERT/NOCOMMIT Did Not Call "Fix Up"
Routine at End of Conversion

Bug 10145825

The Oracle Rdb RMU/CONVERT/NOCOMMIT command converts an Rdb database from an older version
of Rdb to a newer version of Rdb but retains the original metadata as well as the converted metadata so that
later the user can either execute the RMU/CONVERT/COMMIT command to finalize the conversion by
deleting the original metadata or return the database metadata to the original version of Rdb by executing the
RMU/CONVERT/ROLLBACK command.

However, there was a problem where RMU/CONVERT/NOCOMMIT did not attach to the database once it
had been converted and call a routine to fully complete the metadata conversion. This routine has always been
called by RMU/CONVERT/COMMIT. This problem has been fixed and now
RMU/CONVERT/NOCOMMIT will also attach to the database and call this routine to fully complete the
metadata conversion.

Because RMU/CONVERT/NOCOMMIT did not call a routine to fully complete the metadata conversion, the
following problems could occur.

For Multischema databases, access to new system tables could fail because the new system tables
were not added to the schema mapping table.

•

Constraint type information, which would allow easier database queries and future query
optimizations, would not be propagated from RDB$RELATION_CONSTRAINTS to
RDB$CONSTRAINTS.

•

If the database was used for Replication Option for Rdb, an index might not be added to improve
performance (RDB$TRAN_RELS_REL_NAME_NDX on table RDB$TRANSFER_RELATIONS).

•

A file level ACL might not be added or modified to enable RMU access to the database.•

The following shows an example of the problem. The Rdb logical RDMS$SET_FLAGS is defined to see if an
attach to the database is being done at the end of the conversion to call the routine to finalize the metadata
conversion. The output shows that no attach to the database is being executed.

$ DEFINE RDMS$SET_FLAGS "DATABASE"
$ RMU/CONVERT/NOCOMMIT MF_PERSONNEL
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.2−410 on OpenVMS
 Alpha V8.4
Are you satisfied with your backup of
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
 any associated .aij files [N]? Y
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−S−CVTDBSUC, database
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 successfully
 converted from version V7.1 to V7.2

Oracle® Rdb for OpenVMS

5.4.8 RMU/CONVERT/NOCOMMIT Did Not Call "Fix Up" Routine at End of Conversion 172

The following example shows that this problem has been fixed. Again, the Rdb logical RDMS$SET_FLAGS
is defined to see if an attach to the database is being done at the end of the conversion to call the routine to
finalize the metadata conversion. The output now shows that the attach to the database is being executed.

$ DEFINE RDMS$SET_FLAGS "DATABASE"
$ RMU/CONVERT/NOCOMMIT MF_PERSONNEL
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.2−501 on OpenVMS
 Alpha V8.4
Are you satisfied with your backup of
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
 any associated .aij files [N]? Y
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−S−CVTDBSUC, database
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 successfully
 converted from version V7.1 to V7.2
 ATTACH #1, Database
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
 ~P Database Parameter Buffer (version=2, len=62)
 0000 (00000) RDB$K_DPB_VERSION2
 0001 (00001) RDB$K_FACILITY_ALL
 0002 (00002) RDB$K_DPB2_IMAGE_NAME
 "NODE::DEVICE:[DIRECTORY]RMU72.EXE"
 003A (00058) RDB$K_FACILITY_RDB_VMS
 003B (00059) RDB$K_DPB2_CHECK_ACCESS
 RDMS$BIND_WORK_FILE =
 "DEVICE:[DIRECTORY]RDMSTTBL$UN71RK1V4IA10EJ17T80.TMP;"
 (Visible = 0)
 DETACH #1

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.4.9 Problems Validating Files Specified in the
"/AIJ_OPTIONS" File

Bug 10327835

Insufficient user privileges or invalid file device and directory specifications cause fatal file creation errors for
AIJ related files contained in the options file specified by the "/AIJ_OPTIONS" qualifier used with the Oracle
Rdb RMU "RMU/RESTORE", "RMU/RESTORE/ONLY_ROOT", "RMU/MOVE_AREA" and
"RMU/COPY_DATABASE" commands.

However, these fatal file creation problems were not detected at the start of command execution when the
options file specified by the "/AIJ_OPTIONS" qualifier is parsed but at the end of command execution at the
time the AIJ related files specified in the "/AIJ_OPTIONS" file are actually created. Therefore, even though a
fatal error was finally put out and the command was aborted, it was possible for an accessible Rdb database
root file to be created pointing to the wrong AIJ file specification from the original Rdb database root instead
of the AIJ file specification specified in the "/AIJ_OPTIONS" file.

This problem has been corrected in Oracle Rdb Release 7.2.5. Now these fatal AIJ file and AIJ backup file
creation problems are detected at the start of the RMU command execution, immediately after the AIJ options
file is parsed, so no invalid database files are created and a true abort of the command execution occurs.

The following example shows the problem. The device and directory
"DEVICE:[DIRECTORY.TEST.BOGUS]", specified for the three fixed AIJ files in the options file

Oracle® Rdb for OpenVMS

5.4.9 Problems Validating Files Specified in the "/AIJ_OPTIONS" File 173

"bad_aij.opt" used with the "RMU/RESTORE" command, does not exist. However, this problem was not
detected and the restore command was not aborted when the "bad_aij.opt" file was parsed at the start of the
command. Instead, the problem was detected and the command was aborted at the end of the command, after
all the other database files were restored, at the creation time of the AIJ files specified by the "bad_aij.opt"
options file.

$ RMU/RESTORE/LOG/NOCDD/AIJ_OPTIONS=BAD_AIJ.OPT −
 /DIRECTORY=DEVICE:[DIRECTORY.TEST.TEST2] −
 /ROOT=DEVICE:[DIRECTORY.TEST.TEST2] MFP.RBF
%RMU−I−RESTXT_18, Processing options file BAD_AIJ.OPT
 JOURNAL IS ENABLED −
 RESERVE 6 −
 ALLOCATION IS 512 −
 EXTENT IS 512 −
 OVERWRITE IS DISABLED −
 SHUTDOWN_TIMEOUT IS 60 −
 NOTIFY IS DISABLED −
 BACKUPS ARE MANUAL −
 CACHE IS DISABLED
 ADD JOURNAL AIJ1 −
 FILE DEVICE:[DIRECTORY.TEST.BOGUS]AIJ1.AIJ;1
 ! FILE AIJ1
 ADD JOURNAL AIJ2 −
 FILE DEVICE:[DIRECTORY.TEST.BOGUS]AIJ2.AIJ;1
 ! FILE AIJ2
 ADD JOURNAL AIJ3 −
 FILE DEVICE:[DIRECTORY.TEST.BOGUS]AIJ3.AIJ;1
 ! FILE AIJ3
%RMU−I−RESTXT_00, Restored root file DEVICE:[DIRECTORY.TEST.TEST2]
MF_PERSONNEL.RDB;1
%RMU−I−RESTXT_21, Starting full restore of storage area (RDB$SYSTEM)
 DEVICE:[DIRECTORY.TEST.TEST2]MF_PERS_DEFAULT.RDA;1 at 4−FEB−2011 12:57:09.20
%RMU−I−RESTXT_21, Starting full restore of storage area (EMPIDS_OVER)
 DEVICE:[DIRECTORY.TEST.TEST2]EMPIDS_OVER.RDA;1 at 4−FEB−2011 12:57:09.21
%RMU−I−RESTXT_24, Completed full restore of storage area (EMPIDS_OVER)
 DEVICE:[DIRECTORY.TEST.TEST2]EMPIDS_OVER.RDA;1 at 4−FEB−2011 12:57:09.22
%RMU−I−RESTXT_24, Completed full restore of storage area (RDB$SYSTEM)
 DEVICE:[DIRECTORY.TEST.TEST2]MF_PERS_DEFAULT.RDA;1 at 4−FEB−2011 12:57:09.44
%RMU−I−RESTXT_01, Initialized snapshot file
 DEVICE:[DIRECTORY.TEST.TEST2]MF_PERS_DEFAULT.SNP;1
%RMU−I−LOGINIFIL, contains 146 pages, each page is 4 blocks long
%RMU−I−RESTXT_01, Initialized snapshot file
 DEVICE:[DIRECTORY.TEST.TEST2]EMPIDS_OVER.SNP;1
%RMU−I−LOGINIFIL, contains 10 pages, each page is 4 blocks long
%RMU−I−AIJWASON, AIJ journaling was active when the database was backed up
%RMU−I−AIJRECFUL, Recovery of the entire database starts with
 AIJ file sequence 0
%RMU−F−FILACCERR, error creating after−image journal file
 DEVICE:[DIRECTORY.TEST.BOGUS]AIJ1.AIJ;1
−RMS−E−DNF, directory not found
−SYSTEM−W−NOSUCHFILE, no such file
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 4−FEB−2011 12:57:09.57

The following example shows that this problem has been fixed. Again, the device and directory
"DEVICE:[DIRECTORY.TEST.BOGUS]", specified for the three fixed AIJ files in the options file
"bad_aij.opt" used with the "RMU/RESTORE" command, does not exist. However, now the problem is
detected and the restore command is aborted when the "bad_aij.opt" file is parsed at the start of the command,
before any database files have been created.

Oracle® Rdb for OpenVMS

5.4.9 Problems Validating Files Specified in the "/AIJ_OPTIONS" File 174

$ RMU/RESTORE/LOG/NOCDD/AIJ_OPTIONS=BAD_AIJ.OPT −
 /DIRECTORY=DEVICE:[DIRECTORY.TEST.TEST2] −
 /ROOT=DEVICE:[DIRECTORY.TEST.TEST2] MFP.RBF
%RMU−I−RESTXT_18, Processing options file BAD_AIJ.OPT
 JOURNAL IS ENABLED −
 RESERVE 6 −
 ALLOCATION IS 512 −
 EXTENT IS 512 −
 OVERWRITE IS DISABLED −
 SHUTDOWN_TIMEOUT IS 60 −
 NOTIFY IS DISABLED −
 BACKUPS ARE MANUAL −
 CACHE IS DISABLED
 ADD JOURNAL AIJ1 −
 FILE DEVICE:[DIRECTORY.TEST.BOGUS]AIJ1.AIJ;1
 ! FILE AIJ1
 ADD JOURNAL AIJ2 −
 FILE DEVICE:[DIRECTORY.TEST.BOGUS]AIJ2.AIJ;1
 ! FILE AIJ2
 ADD JOURNAL AIJ3 −
 FILE DEVICE:[DIRECTORY.TEST.BOGUS]AIJ3.AIJ;1
 ! FILE AIJ3
%RMU−F−FILACCERR, error creating after−image journal file
 DEVICE:[DIRECTORY.TEST.BOGUS]AIJ1.AIJ;1
−RMS−E−DNF, directory not found
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 4−FEB−2011
12:59:17.33

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.4.10 RMU Online Backup May Store TSNs of Zero

Bug 11769886

When an online RMU Backup operation captures data from a live page that requires searching a snapshot
chain to retrieve visible row content, the TSN values written to the backup output would incorrectly be stored
as zeros.

In certain cases, a database restored from such a backup may contain incorrect record content and may lead to
verification or runtime errors.

This problem has been corrected in Oracle Rdb Release 7.2.5. Correct TSN values are now written to the
backup output.

5.4.11 RMU/SET AFTER/AIJ_OPTIONS RMU−F−VALLSMIN
Error If "RESERVE 0"

Bug 11741193

The Oracle Rdb RMU "RMU/SET AFTER/AIJ_OPTIONS" command failed with the error
"RMU−F−VALLSSMIN, value (0) is less than minimum allowed value (1) for RESERVE" if "RESERVE 0"
was specified or no "RESERVE" clause was specified in the AIJ options file. Therefore, even if sufficient AIJ
file reservations were already defined for the database, there was no way to avoid reserving additional
unneeded space in the after−image journal configuration when the "ADD JOURNAL" clause was used in the

Oracle® Rdb for OpenVMS

5.4.10 RMU Online Backup May Store TSNs of Zero 175

AIJ options file specified by the "RMU/SET AFTER/AIJ_OPTIONS" command.

If the AIJ options file was not used and "RMU/SET AFTER/RESERVE=0" was specified on the command
line, or the "/RESERVE" qualifier was not specified on the command line, then RMU/SET AFTER correctly
did not reserve additional space in the after−image journal configuration. This is the way the RESERVE
clause is supposed to work as specified in the Orace Rdb RMU documentation for the "RMU/SET AFTER"
command. If the AIJ file reservations already defined for the database are not sufficient to hold the additional
AIJ files added to the after−image journal file configuration by the "ADD JOURNAL" clause, the error
"%RMU−F−NOAIJSLOTS, no more after−image journal slots are available" will continue to be output and
the "RMU/SET AFTER" command will fail with no changes made to the database AIJ configuration.

This problem has been fixed. Now "RESERVE 0" can be specified in the AIJ options file used with the
"RMU/SET AFTER" command or no "RESERVE" clause can be specified. In both cases, no additional space
in the after−image journal configuration will be reserved.

The following examples show the problem. Both when no "RESERVE" clause is specified in the AIJ options
file and when "RESERVE 0" is specified to indicate that no additional space in the after−image journal
configuration should be reserved, the "RMU/SET AFTER" command incorrectly fails with the
"%RMU−F−VALLSSMIN" error. Only when a reserve clause with a value greater than zero is specified does
the "RMU/SET AFTER" command succeed.

$ type aij.opt
JOURNAL IS ENABLED
ADD JOURNAL AIJ1 FILE DEVICE:[DIRECTORY]AIJ1
$ RMU/SET AFTER /AIJ_OPTION=AIJ.OPT MF_PERSONNEL
%RMU−F−VALLSSMIN, value (0) is less than minimum allowed value (1)
 for RESERVE
%RMU−F−FTL_SET, Fatal error for SET operation at 10−FEB−2011
 08:11:46.75
$ type aij.opt
JOURNAL IS ENABLED RESERVE 0
ADD JOURNAL AIJ1 FILE DEVICE:[DIRECTORY]AIJ1
$ RMU/SET AFTER /AIJ_OPTION=AIJ.OPT MF_PERSONNEL
%RMU−F−VALLSSMIN, value (0) is less than minimum allowed value (1)
 for RESERVE
%RMU−F−FTL_SET, Fatal error for SET operation at 10−FEB−2011
 08:11:46.75
$ RMU/SET AFTER /AIJ_OPTION=AIJ.OPT MF_PERSONNEL
%RMU−I−RESTXT_18, Processing options file AIJ.OPT
 JOURNAL IS ENABLED RESERVE 1
 ADD JOURNAL AIJ1 FILE DEVICE:[DIRECTORY]AIJ1
%RMU−I−LOGMODFLG, disabled after−image journaling
%RMU−I−LOGMODVAL, reserved 1 additional after−image journals
%RMU−W−DOFULLBCK, full database backup should be done to ensure
 future recovery
%RMU−I−LOGCREAIJ, created after−image journal file
 DEVICE:[DIRECTORY]AIJ1.AIJ;1
%RMU−I−LOGMODSTR, activated after−image journal "AIJ1"
%RMU−I−LOGMODFLG, enabled after−image journaling
%RMU−W−DOFULLBCK, full database backup should be done to ensure
 future recovery

The following example shows that this problem has been fixed. Both when no "RESERVE" clause is
specified in the AIJ options file and when "RESERVE 0" is specified to indicate that no additional space in
the after−image journal configuration should be reserved the "RMU/SET AFTER" command succeeds and the
"%RMU−I−LOGMODVAL, reserved 1 additional after−image journals" file message does not come out

Oracle® Rdb for OpenVMS

5.4.10 RMU Online Backup May Store TSNs of Zero 176

indicating that no additional space in the AIJ configuration has been reserved but currently available space has
been used.

$ RMU/SET AFTER /AIJ_OPTION=AIJ.OPT MF_PERSONNEL
%RMU−I−RESTXT_18, Processing options file AIJ.OPT
 JOURNAL IS ENABLED
 ADD JOURNAL AIJ1 FILE DEVICE:[DIRECTORY]AIJ1
%RMU−I−LOGMODFLG, disabled after−image journaling
%RMU−W−DOFULLBCK, full database backup should be done to ensure
 future recovery
%RMU−I−LOGCREAIJ, created after−image journal file
 DEVICE:[DIRECTORY]AIJ1.AIJ;1
%RMU−I−LOGMODSTR, activated after−image journal "AIJ1"
%RMU−I−LOGMODFLG, enabled after−image journaling
%RMU−W−DOFULLBCK, full database backup should be done to ensure
 future recovery
$ RMU/SET AFTER /AIJ_OPTION=AIJ.OPT MF_PERSONNEL
%RMU−I−RESTXT_18, Processing options file AIJ.OPT
 JOURNAL IS ENABLED RESERVE 0
 ADD JOURNAL AIJ1 FILE DEVICE:[DIRECTORY]AIJ1
%RMU−I−LOGMODFLG, disabled after−image journaling
%RMU−W−DOFULLBCK, full database backup should be done to ensure
 future recovery
%RMU−I−LOGCREAIJ, created after−image journal file
 DEVICE:[DIRECTORY]AIJ1.AIJ;1
%RMU−I−LOGMODSTR, activated after−image journal "AIJ1"
%RMU−I−LOGMODFLG, enabled after−image journaling
%RMU−W−DOFULLBCK, full database backup should be done to ensure
 future recovery

As indicated above, to avoid this problem in a previous version of Oracle Rdb RMU, either specify a
non−zero reserve clause in the AIJ options file or do not use the AIJ options file with the "RMU/SET
AFTER" command but use the "/RESERVE" and "/ADD" qualifiers on the command line instead.

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.4.12 RMU/BACKUP/PARALLEL/RESTORE_OPTIONS Was
Not Fully Supported

Bug 6767004

The "/RESTORE_OPTIONS" qualifier, when used with the Oracle Rdb RMU "RMU/BACKUP" command,
specifies the file specification of an options file that the backup command creates which contains storage area
names followed by storage area qualifiers that define the attributes of the storages areas in the database being
backed up. This options file can then be edited and specified by the "/OPTIONS" qualifier used with the
"RMU/RESTORE" command to change the attributes of these storage areas when the database is restored.

The "/RESTORE_OPTIONS" qualifier did not work properly when used with the "/PARALLEL" qualifier on
the "RMU/BACKUP" command line. The "RESTORE_OPTIONS" option was not put in the PLAN file and
was therefore never passed to the "Coordinator" process for execution in a multi−process environment.
Therefore, if the "RMU/BACKUP/PLAN" command was used to do a parallel backup using the PLAN file, or
when the default "/EXECUTE" qualifier was specified with the "RMU/BACKUP/PARALLEL" command, no
restore options file was created.

Oracle® Rdb for OpenVMS

5.4.12 RMU/BACKUP/PARALLEL/RESTORE_OPTIONS Was Not Fully Supported 177

This problem has been fixed. Now when the "/RESTORE_OPTIONS" qualifier is specified on the
"RMU/BACKUP/PARALLEL" command line, the entry

 Restore_options = file

will be added to the PLAN file, where "file" is the valid VMS file specification of the options file specified by
the "/RESTORE_OPTIONS = file" qualifier on the command line, and the options file will be created when
the PLAN file is executed. If the "/RESTORE_OPTIONS" qualifier is not specified on the command line, the
following "place holder" entry in the form of a comment will be put in the PLAN file and no restore options
file will be created when the PLAN file is executed.

 ! Restore_options = Restore options file

The following example shows the problem. When the parallel backup is executed, the "TMP.PLAN" file
created does not contain the "RESTORE_OPTIONS" option and the "RES.OPT" restore options file is not
created. When the parallel backup is repeated based on the same "TMP.PLAN" file, the "RES.OPT" file is
again not created.

$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/THREADS=3−
 /RESTORE_OPTIONS=DEVICE:[DIRCTORY]RES.OPT/EXEC/LIST=TMP.PLAN−
 MF_PERSONNEL [.DIR1]MFP,[.DIR2]
%RMU−I−COMPLETED, BACKUP operation completed at
 2−MAR−2011 15:19:19.40
$ SEAR TMP.PLAN RESTORE_OPTIONS
%SEARCH−I−NOMATCHES, no strings matched
$ DIR *.OPT
%DIRECT−W−NOFILES, no files found
$ RMU/BACKUP/PLAN TMP.PLAN
%RMU−I−COMPLETED, BACKUP operation completed at
 2−MAR−2011 15:30:19.40
$ DIR *.OPT
%DIRECT−W−NOFILES, no files found

The following example shows that this problem has been fixed. When the parallel backup is executed, the
"TMP.PLAN" file created does contain the "RESTORE_OPTIONS" option and the "RES.OPT" restore
options file is created. When the parallel backup is repeated based on the same "TMP.PLAN" file, the
"RES.OPT" file is again created.

$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/THREADS=3−
 /RESTORE_OPTIONS=DEVICE:[DIRCTORY]RES.OPT/EXEC/LIST=TMP.PLAN−
 MF_PERSONNEL [.DIR1]MFP,[.DIR2]
%RMU−I−COMPLETED, BACKUP operation completed at
 3−MAR−2011 15:19:19.40
$ SEAR TMP.PLAN RESTORE_OPTIONS
 Restore_options = DEVICE:[DIRECTORY]RES.OPT
$ DIR *.OPT

Directory DEVICE:[DIRECTORY]

RES.OPT;1
$ RMU/BACKUP/PLAN TMP.PLAN
%RMU−I−COMPLETED, BACKUP operation completed at
 3−MAR−2011 15:30:19.40
$ DIR *.OPT

Directory DEVICE:[DIRECTORY]

Oracle® Rdb for OpenVMS

5.4.12 RMU/BACKUP/PARALLEL/RESTORE_OPTIONS Was Not Fully Supported 178

RES.OPT;2

This problem has been corrected in Oracle Rdb Release 7.2.5.

Oracle® Rdb for OpenVMS

5.4.12 RMU/BACKUP/PARALLEL/RESTORE_OPTIONS Was Not Fully Supported 179

5.5 LogMiner Errors Fixed

5.5.1 RMU/UNLOAD/AFTER_JOURNAL /STATISTICS With
/OUTPUT Information Display

In prior versions of Oracle Rdb, when using the "/STATISTICS" and "/OUTPUT" qualifiers with the
RMU/UNLOAD/AFTER_JOURNAL command, the periodic statistics display records (containing the
elapsed time, CPU time, IO counts and so on) would be written to SYS$OUTPUT rather than to the output
file as specified.

This problem has been corrected in Oracle Rdb Release 7.2.5. The periodic statistics display record is now
written to the output file rather than to SYS$OUTPUT.

5.5 LogMiner Errors Fixed 180

5.6 Row Cache Errors Fixed

5.6.1 Row Caching Remains Unexpectedly Disabled for a
Newly Added Storage Area

Bug 5926180

In prior releases, a DROP STORAGE AREA for an area that was cached would cause row caching for that
cache to become disabled. Subsequently, when a new area was added which also referenced that same cache,
it remained disabled. An ALTER DATABASE ... ALTER STORAGE AREA ... CACHE USING was
required to reenable row caching for that cache.

The following example shows that after the ADD STORAGE AREA, row caching for the area remains
disabled.

SQL> alter database
cont> filename KOD_ADD_AREA_CACHE_USING_7_DB
cont> drop storage area KOD_ADD_AREA_CACHE_USING_7_AREA
cont> ;
SQL> $ rmu/dump/header KOD_ADD_AREA_CACHE_USING_7_DB/out=middle.txt
SQL> $ search middle.txt "Row Caching..."/wind=(0,2)
 Row Caching...
 − Row caching is enabled
 − No row cache is defined for this area

SQL> alter database
cont> filename KOD_ADD_AREA_CACHE_USING_7_DB
cont> add storage area KOD_ADD_AREA_CACHE_USING_7_AREA
cont> page format is MIXED
cont> cache using BIG_CACHE
cont> ;
SQL> $ rmu/dump/header KOD_ADD_AREA_CACHE_USING_7_DB/out=after.txt
SQL> $ search after.txt "Row Caching..."/wind=(0,2)
 Row Caching...
 − Row caching is enabled
 − No row cache is defined for this area

 Row Caching...
 − Row caching is disabled
 − Row cache ID is 1

SQL>

This problem has been corrected in Oracle Rdb Release 7.2.5. The ADD STORAGE AREA command now
implicitly enables row caching for the cache specified in the CACHE USING clause.

5.6 Row Cache Errors Fixed 181

5.7 RMU Show Statistics Errors Fixed

5.7.1 Stall Statistics (Aggregate Count) In RMU /SHOW
STATISTICS Inaccurate

Bug 10016136

In previous versions of Oracle Rdb, the values on the "Stall Statistics (Aggregate Count)" display were
incorrectly scaled and were displayed as inaccurate values.

This problem has been corrected in Oracle Rdb Release 7.2.5. The correct scaling factor is now used.

5.7.2 Unexpected ACCVIO When Using RMU/SHOW
STATISTICS

Bug 11871974

In prior releases of Oracle Rdb, it was possible to receive an ACCVIO as RMU Show Statistics was returning
to DCL. This problem was most likely due to an error freeing virtual memory used during the session. The
ACCVIO causes a bugcheck dump to be generated with a footprint similar to the following.

Itanium OpenVMS 8.3−1H1•
Oracle Rdb Server 7.2.4.1.0•
Got a RMUBUGCHK.DMP•
SYSTEM−F−ACCVIO, access violation, virtual address=FFFFFFFF816F4040•
Exception occurred at RMU72\COSI_MEM_FREE_VMLIST + 00000132•
Called from RMU72\KUT$DISPLAY + 00004DB0•
Called from RMU72\RMU$DISPLAY + 000044E0•
Called from RMU72\RMU$SHOW + 000014D0•

This problem has been corrected in Oracle Rdb Release 7.2.5.

5.7 RMU Show Statistics Errors Fixed 182

Chapter 6
Enhancements And Changes Provided in Oracle
Rdb Release 7.2.5.3

Chapter 6Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.3 183

6.1 Enhancements And Changes Provided in
Oracle Rdb Release 7.2.5.3

6.1.1 SQL Now Supports SQL Standard Syntax for SET
CONSTRAINTS ALL

This release of Oracle Rdb now supports the ANSI/ISO SQL Standard statement SET CONSTRAINTS in
addition to the older Rdb syntax.

SET −+−> ALL CONSTRAINTS −+−−−−+−−+−> DEFERRED −−−+−−>
 | | | |
 +−> CONSTRAINT −−+−> ALL −+ +−> IMMEDIATE −−+
 | | | |
 +−> CONSTRAINTS −+ +−> DEFAULT −−−−+
 | |
 +−> ON −−−−−−−−−+
 | |
 +−> OFF −−−−−−−−+

The existing SET ALL CONSTRAINTS statement is retained for backward compatibility.

This problem has been corrected in Oracle Rdb Release 7.2.5.3.

6.1.2 New RMU/DUMP/BACKUP Enhanced Error Handling
Features

When the RMU/DUMP/BACKUP command detected a non−fatal error as it was reading an Oracle Rdb
database backup file, it reported the error but continued with the dump to determine if there were other errors
in the backup file. In addition, RMU/DUMP/BACKUP returned a success status in the $STATUS symbol
when it finished reading the backup file and had a normal termination, whether or not it had output errors it
detected while reading the backup file.

If the RMU/DUMP/BACKUP command is being used just to verify the validity of the backup file, reading the
entire backup file just to determine if it is valid can take a long time for large backup files, especially if they
are on tape media. In addition, the success status in the $STATUS symbol when the dump completed
sometimes caused errors output during the dump to be missed or unnecessary time to be spent searching for
any errors in an RMU/DUMP/BACKUP batch job log file.

To fix these problems, the RMU/DUMP/BACKUP error handling has been enhanced. The last most serious
error detected by RMU/DUMP/BACKUP during the dump of the backup file will now always be put in the
symbol $STATUS which can be tested when RMU/DUMP/BACKUP completes or aborts by executing the
VMS command "SHOW SYMBOL $STATUS". In addition, a new [NO]EXIT_ERROR qualifier has been
added to the RMU/DUMP/BACKUP command to optionally abort the dump operation as soon as an error is
detected reading the backup file.

[NO]EXIT_ERROR

6.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.3 184

NOEXIT_ERROR, the default, keeps the current functionality: the RMU/DUMP/BACKUP operation will
only be aborted if a fatal error is detected which prevents RMU/DUMP/BACKUP from continuing to dump
the database backup file.

In the following example, the /EXIT_ERROR qualifier is specified with the RMU/DUMP/BACKUP
command. When the first error is detected while reading the backup file, MF_PERSONNEL.RBF, the dump
operation is aborted and the status of the error which caused the dump to be aborted, RMU−E−BLOCKLOST,
is saved in the $STATUS symbol when the RMU/DUMP/BACKUP command exits.

$ RMU/DUMP/BACKUP/EXIT_ERROR MF_PERSONNEL.RBF
%RMU−I−DMPTXT_163, No dump option selected. Performing read check.
%RMU−E−BLOCKLOST, block of DEVICE:[DIRECTORY]MF_PERSONNEL.RBF; lost due to
unrecoverable error
%RMU−F−FATALERR, fatal error on DUMP_BACKUP
%RMU−F−FTL_DUMP, Fatal error for DUMP operation at 1−MAY−2013 11:32:13.45
$ SHOW SYMBOL $STATUS
 $STATUS == "%X12C8821A"

In the following example, the /NOEXIT_ERROR qualifier is first specified with the RMU/DUMP/BACKUP
command. This is the default so the second RMU/DUMP/BACKUP command, which does not specify the
/NOEXIT_ERROR qualifier, has the same results as the first RMU/DUMP/BACKUP command which does
specify the /NOEXIT_ERROR qualifier. When non−fatal errors are detected reading the backup file,
MF_PERSONNEL.RBF, the dump operation continues and is not aborted. But now the status of the last most
severe error detected reading the backup file, RMU−E−BLOCKLOST, is saved in the $STATUS symbol
when the RMU/DUMP/BACKUP command finishes reading the backup file, not a success status. A count is
also given of any soft media errors which were not reported because they did not reoccur when retrying the
media read operations.

$ RMU/DUMP/BACKUP/NOEXIT_ERROR MF_PERSONNEL.RBF
%RMU−I−DMPTXT_163, No dump option selected. Performing read check.
%RMU−E−BLOCKLOST, block of DEVICE:[DIRECTORY]MF_PERSONNEL.RBF; lost due to
unrecoverable error
%RMU−I−SOFTRERRS, 5 recoverable media errors occurred reading
DEVICE:[DIRECTORY]MF_PERSONNEL.RBF;
$ SHOW SYMBOL $STATUS
 $STATUS == "%X12C8821A"
$ RMU/DUMP/BACKUP MF_PERSONNEL.RBF
%RMU−I−DMPTXT_163, No dump option selected. Performing read check.
%RMU−E−BLOCKLOST, block of DEVICE:[DIRECTORY]MF_PERSONNEL.RBF; lost due to
unrecoverable error
%RMU−I−SOFTRERRS, 5 recoverable media errors occurred reading
DEVICE:[DIRECTORY]MF_PERSONNEL.RBF;
$ SHOW SYMBOL $STATUS
 $STATUS == "%X12C8821A"

6.1.3 RMU/DUMP/BACKUP Now Dumps Plan File
Parameters for Parallel Backups

For non−parallel Oracle Rdb database backups, the RMU/BACKUP command from the command line is
saved in the backup file summary record as one continuous line. The RMU/DUMP/BACKUP command will
print out the backup command from the summary record following the characters "COMMAND =".

Oracle® Rdb for OpenVMS

6.1.3 RMU/DUMP/BACKUP Now Dumps Plan File Parameters for Parallel Backups 185

For parallel Oracle Rdb database backups, implemented using the RMU/BACKUP/PARALLEL and
RMU/BACKUP/PLAN commands, a plan file is created or read which contains the backup parameters that
are actually executed. Therefore, the backup plan name from the backup plan file was saved in the backup file
summary record instead of the command line parameters. However, if the plan file was no longer available or
the plan file was just a temporary file created by the backup and then deleted, the plan file parameters used to
create the backup file would be lost and could not be determined by using the RMU/DUMP/BACKUP
command.

To solve this problem, the actual parallel backup parameters from the backup plan file executed by
RMU/BACKUP/PARALLEL or RMU/BACKUP/PLAN will now be saved in the backup file summary
record as one continuous line instead of just the plan file name. The RMU/DUMP/BACKUP command will
now print out the parallel backup plan parameters stored in the backup file summary record following the
characters "COMMAND =". Note that a direct copy of the plan file will not be saved in the summary record,
but all the plan file parameters which are equivalent to command line parameters will be saved. Plan file
comments and plan file parameters equivalent to command line parameters which are documented as default
parameters, which do not have to be specified for the parallel backup, will not be saved.

The following example demonstrates this new feature. The parallel backup command creates and executes a
plan file based on the command line parameters. In this case, the plan file created is saved in a file called
MFP.PLAN specified using the /LIST_FILE qualifier, but if the /LIST_FILE qualifier is not specified, the
plan file parameters will not be saved in a created plan file. However, because of this new feature, the plan file
parameters are always saved in the summary record and can then be dumped using the
RMU/DUMP/BACKUP command. A search for "COMMAND =" will find the continuous line containing the
plan file parameters used to create the backup file. Note that most of the data output by the dump is not shown
in the example below. The plan file parameters displayed following "COMMAND =" will be one continuous
line with parameters separated by five or more spaces equivalent to the indent used for the parameter in the
plan file. Carriage returns have been inserted in the example below just to make all the command line
parameters easily visible for this example.

$ RMU/BACKUP/ENCRYPT=(VALUE="my test key")/PARALLEL=(EXECUTOR_COUNT=2) −
 /EXTEND=64000/DISK_FILE=(WRITER_THREADS=2) −
 /PAGE_BUFFERS=5/ONLINE/QUIET_POINT −
 /LIST_PLAN=MFP.PLAN/NOLOG −
 MF_PERSONNEL.RDB −
 DISK:[DIRECTORY]MFP.RBF, −
 DISK:[DIRECTORY]
%RMU−I−ENCRYPTUSED, Encryption key required when future restore performed.
$ RMU/DUMP/BACKUP/ENCRYPT=(VALUE="my test key") −
 /DISK_FILE/OPTION=DEBUG −
 DISK:[DIRECTORY]MFP.RBF, −
 DISK:[DIRECTORY]

*−−
* Oracle Rdb X7.2−00 10−MAY−2013 10:06:29.55
*
* Dump of Database Backup Header
* Backup filename: MFP.RBF
* Backup file database version: 7.2
*
*−−

BACKUP FILE = MFP.RBF

COMMAND = Plan Name = MFP Plan Type = BACKUP
 Database Root File = DISK:[DIRECTORY]PERSONNEL.RDB;1
 Backup File = MFP.RBF Style = Multifile PromptAutomatic

Oracle® Rdb for OpenVMS

6.1.3 RMU/DUMP/BACKUP Now Dumps Plan File Parameters for Parallel Backups 186

 Tape_Expiration = 10−MAY−2013 Active_IO = 3 Threads = 0
 Page_Buffers = 5 Extend_Quantity = 64000 Nolog Statistics ACL
 Encrypt = (Value="my test key",Algorithm="DESCBC") CRC = AUTODIN_II
 Online Quiet_Point
 Executor Parameters : Writer_threads = 1
 Directory List DISK:[DIRECTORY.G1]
 End Directory List End Executor Parameters
 Executor Parameters : Writer_threads = 1
 Directory List DISK:[DIRECTORY.G2]
 End Directory List End Executor Parameters

ROOT_FILE = DISK:[DIRECTORY]MF_PERSONNEL.RDB;1

DRIVE = _DISK

$

Oracle® Rdb for OpenVMS

6.1.3 RMU/DUMP/BACKUP Now Dumps Plan File Parameters for Parallel Backups 187

Chapter 7
Enhancements And Changes Provided in Oracle
Rdb Release 7.2.5.2

Chapter 7Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.2 188

7.1 Enhancements And Changes Provided in
Oracle Rdb Release 7.2.5.2

7.1.1 New Prefix Added to Logical Name Created by the Log
Recovery Server

In Oracle Rdb and Oracle CODASYL DBMS, the Log Recovery Server (LRS) used for database replication
creates a system logical name when database replication is started. This logical name is a changing encoded
numeric hexadecimal device name which points to the current LRS server VMS hexadecimal process id
(PID). This logical name is used for communication between the LRS, AIJ, LCS and ALS servers. Unlike
other logicals created by Rdb and DBMS, this logical name gave no indication that it was created by the Rdb
or DBMS LRS server.

The following is an example of this logical name in previous versions of Rdb and DBMS.

$ SHOW LOGICAL/SYSTEM 31414744*

(LNM$SYSTEM_TABLE)

 "314147442431245F0A000001B90318" = "224DDC17"

Now a prefix has been added to this logical name to identify it as being created by the Rdb or DBMS LRS
server when database replication is started. The new prefix for this logical name is "RDM$LRS" for Rdb.

$ SHOW LOGICAL/SYSTEM RDM$LRS*

(LNM$SYSTEM_TABLE)

 "RDM$LRS314147442431245F0A000001B90318" = "224DDC17"

The new prefix for this logical name is "DBM$LRS" for DBMS.

$ SHOW LOGICAL/SYSTEM DBM$LRS*

(LNM$SYSTEM_TABLE)

 "DBM$LRS314147442431245F0A000001B90318" = "224DDC17"

This system logical is deleted if the LRS server terminates normally or is terminated by a detected error
condition. However, it is possible in some cases of abnormal and unexpected LRS process failure that this
logical does not get deleted by the LRS process. This new prefix will make it easier to identify this system
logical and to delete it if the LRS process terminates abnormally without deleting this system logical.

The following example shows references to this logical in the logs of the LRS and AIJ database replication
servers. In these logs, this logical is referred to as the "tincan" logical because it is used as a tool for basic
communication between the database replication servers.

$ RMU/REPLICATE AFTER_JOURNAL START SQL$DATABASE /LOG /WAIT −
 /CONNECT_TIMEOUT=30
$ TYPE LRS_S_21B994CF.LOG

7.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.2 189

 2−MAR−2012 10:02:16.59 − Server name: "324147442431245F0A0000004639CE"
 2−MAR−2012 10:02:16.59 − Creating tincan owner "324147442431245F0A0000004639CE"
 2−MAR−2012 10:02:16.59 − Creating tincan logical name
"RDM$LRS324147442431245F0A0000004639CE"

$ TYPE AIJSRV_S_21A0C0D1.LOG

 2−MAR−2012 10:02:18.47 − Retrieving tincan owner
"324147442431245F0A0000004639CE"
 2−MAR−2012 10:02:18.47 − Retrieving tincan logical name
"RDM$LRS324147442431245F0A0000004639CE"

$ RMU/REPLICATE AFTER_JOURNAL STOP SQL$DATABASE

$ TYPE LRS_S_21B994CF.LOG
 2−MAR−2012 10:10:34.22 − Deleting tincan owner "324147442431245F0A0000004639CE"
 2−MAR−2012 10:10:34.22 − Deleting tincan logical name
"RDM$LRS324147442431245F0A0000004639CE"

The following example shows how this logical can be deleted if for any reason database replication has been
terminated abnormally and this logical has not been deleted by the LRS server. This logical should never be
deleted while database replication is active or replication errors can occur. It should only be deleted if for any
reason the LRS replication server fails to delete this logical before it terminates.

$ SHOW LOGICAL/SYSTEM RDM$LRS*

(LNM$SYSTEM_TABLE)

 "RDM$LRS314147442431245F0A000001B90318" = "224DDC17"

$ DEASSIGN/SYSTEM RDM$LRS314147442431245F0A000001B90318

$ SHOW LOGICAL/SYSTEM DBM$LRS*

(LNM$SYSTEM_TABLE)

 "DBM$LRS314147442431245F0A000001B90318" = "224DDC17"

$ DEASSIGN/SYSTEM DBM$LRS314147442431245F0A000001B90318

7.1.2 Information Tables Updated

The following additions have been made to the RDB$CACHES information table.

RDB$SWEEP_FREE_PCT − Percent of slots to free during sweep.•
RDB$SWEEP_BATCH_COUNT − Number of records to batch write.•
RDB$FLAGS•
Bit 8 − Use memory−resident section for cache.•

The following additions have been made to the RDB$DATABASE_ROOT information table.

RDB$UNIQUE_VERSION − Physical database create time−and−date. This field contains the
time−and−date stamp when this physical database was created / restored / copied.

•

RDB$FLAGS•
Bit 30 − Security audit enabled.•

Oracle® Rdb for OpenVMS

7.1.2 Information Tables Updated 190

Bit 31 − Security alarm enabled flag.•
Bit 32 − Audit/alarm on first access only.•
Bit 33 − Audit synchronous flush flag.•
Bit 34 − Standby database is opened read−only.•
Bit 35 − Roll−forward quiet−point enabled.•
Bit 36 − Database has been modified while LSS inactive.•
Bit 37 − Continuous LogMiner feature enabled.•
Bit 38 − AIJ buffer objects enabled.•
Bit 39 − OBJMAN buffer objects enabled.•
Bit 40 − Page buffer objects enabled.•
Bit 41 − RUJ buffer objects enabled.•

The following addition has been made to the RDB$DATABASE_JOURNAL information table.

RDB$LSS_NETTYPE − Network transport (DECnet, TCP/IP).•

Please refer to the SQL Reference Manual for full details.

7.1.3 RMU/RESTORE/ONLY_ROOT Now Supports the
/ENCRYPT Qualifier

The RMU/RESTORE/ONLY_ROOT command restores only the root file (*.RDB) from a backup file
(*.RBF) of an Oracle Rdb database. There was a problem which caused the RMU/RESTORE/ONLY_ROOT
command to not support the /ENCRYPT qualifier which must be used to restore database files from encrypted
Rdb backup files. The only workaround was to do a full restore of all of the Rdb database files including the
root file, since the /ENCRYPT command is supported for a full restore of the database.

This problem has been fixed and now the /ENCRYPT qualifier can be used with the
RMU/RESTORE/ONLY_ROOT command to restore only the database root file from an encrypted database
backup file (*.RBF) created by using the /ENCRYPT qualifier with the RMU/BACKUP command.

The following example shows the problem. The RMU/BACKUP command backs up the MF_PERSONNEL
database to the encrypted backup file MF_PERSONNEL_BCK.RBF using the /ENCRYPT qualifier. Then the
MF_PERSONNEL database is deleted and then restored from the encrypted MF_PERSONNEL_BCK.RBF
using the /ENCRYPT command to de−encrypt the restored database files. Then the restored
MF_PERSONNEL.RDB database root file is deleted. When the first RMU/RESTORE/ONLY_ROOT
command is used to restore the deleted database root file, an error is output because the /ENCRYPT qualifier
must be used to de−encrypt the encrypted backup file. But when the /ENCRYPT qualifier was then specified
with the second RMU/RESTORE/ONLY_ROOT command, the root file restore failed because the
RMU/RESTORE/ONLY_ROOT command did not support the /ENCRYPT qualifier.

$ RMU/BACKUP/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOLOG −
 MF_PERSONNEL.RDB MF_PERSONNEL_BCK.RBF
%RMU−I−ENCRYPTUSED, Encryption key required when future restore performed.
$ SQL
DROP DATABASE FILENAME MF_PERSONNEL;
EXIT;
$ RMU/RESTORE/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOCDD/NOLOG
MF_PERSONNEL_BCK
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
%RMU−W−USERECCOM, Use the RMU Recover command. The journals are not available.

Oracle® Rdb for OpenVMS

7.1.3 RMU/RESTORE/ONLY_ROOT Now Supports the /ENCRYPT Qualifier 191

$ RMU/VERIFY/NOLOG MF_PERSONNEL
$ DELETE MF_PERSONNEL.RDB;*
$ RMU/RESTORE/ONLY_ROOT/NOLOG MF_PERSONNEL_BCK
%RMU−F−ENCRYPTSAVSET, save set is encrypted, /ENCRYPT must be specified
%RMU−F−FATALERR, fatal error on RESTORE_ROOT_ONLY
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 21−JUN−2012 09:31:56.41
$ RMU/RESTORE/ONLY_ROOT/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOLOG
MF_PERSONNEL_BCK.RBF
%DCL−W−IVQUAL, unrecognized qualifier − check validity, spelling, and placement
\ENCRYPT\

The following example shows that this problem has been fixed and that /ENCRYPT is not supported. The
RMU/BACKUP command backs up the MF_PERSONNEL database to the encrypted backup file
MF_PERSONNEL_BCK.RBF using the /ENCRYPT qualifier. Then the MF_PERSONNEL database is
deleted and then restored from the encrypted MF_PERSONNEL_BCK.RBF using the /ENCRYPT command
to de−encrypt the restored database files. Then the MF_PERSONNEL.RDB database root file is deleted.
When the first RMU/RESTORE/ONLY_ROOT command is used to restore the deleted database root file, an
error is output because the /ENCRYPT qualifier must be used to de−encrypt the encrypted backup file. Now
when the /ENCRYPT qualifier is then specified with the second RMU/RESTORE/ONLY_ROOT command,
the root file restore succeeds because the RMU/RESTORE/ONLY_ROOT command now supports the
/ENCRYPT qualifier.

$ RMU/BACKUP/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOLOG −
 MF_PERSONNEL.RDB MF_PERSONNEL_BCK.RBF
%RMU−I−ENCRYPTUSED, Encryption key required when future restore performed.
$ SQL
DROP DATABASE FILENAME MF_PERSONNEL;
EXIT;
$ RMU/RESTORE/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOCDD/NOLOG
MF_PERSONNEL_BCK
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
%RMU−W−USERECCOM, Use the RMU Recover command. The journals are not available.
$ RMU/VERIFY/NOLOG MF_PERSONNEL
$ DELETE MF_PERSONNEL.RDB;*
$ RMU/RESTORE/ONLY_ROOT/NOLOG MF_PERSONNEL_BCK
%RMU−F−ENCRYPTSAVSET, save set is encrypted, /ENCRYPT must be specified
%RMU−F−FATALERR, fatal error on RESTORE_ROOT_ONLY
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 21−JUN−2012 09:45:52.41
$ RMU/RESTORE/ONLY_ROOT/ENCRYPT=(VALUE="My secret key",ALGORITHM=DESCBC)/NOLOG
MF_PERSONNEL_BCK.RBF
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
$ RMU/VERIFY/NOLOG MF_PERSONNEL

This new feature is supported in Oracle Rdb Release 7.2.5.2.

7.1.4 New Option POSITION_COLUMN Added to RMU
Extract

Bug 14085671

In prior versions of Oracle Rdb, tables that were altered to reorder columns using BEFORE COLUMN and
AFTER COLUMN clauses were extracted as a CREATE TABLE statement followed by an ALTER TABLE
statement. This is done by RMU Extract to ensure that dependencies between columns (COMPUTED BY,

Oracle® Rdb for OpenVMS

7.1.4 New Option POSITION_COLUMN Added to RMU Extract 192

AUTOMATIC AS and DEFAULT clauses) are maintained, if possible.

The following example shows the output for a simple table.

create table TEST_TABLE (
 FLD1
 CHAR (10),
 FLD2
 CHAR (10),
 FLD3
 CHAR (10));

 −− apply the alternate column ordering
 alter table TEST_TABLE
 alter column FLD3 before column FLD1;

In some cases, the user may wish only a CREATE TABLE statement. Therefore, this release of RMU Extract
supports a new Option, POSITION_COLUMN, which will order columns by position instead of the default
field identification. Note that such definitions may not be able to create the table if referenced columns appear
after their reference. The default option is NOPOSITION_COLUMN.

Oracle® Rdb for OpenVMS

7.1.4 New Option POSITION_COLUMN Added to RMU Extract 193

Chapter 8
Enhancements And Changes Provided in Oracle
Rdb Release 7.2.5.1

Chapter 8Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.1 194

8.1 Enhancements And Changes Provided in
Oracle Rdb Release 7.2.5.1

8.1.1 New RMU Options File to Modify the Row Cache
Backing Store Directories

The Oracle Rdb RMU "/SET ROW CACHE" command currently allows the Row Cache per−database default
backing store directory and the database per−cache backing store directories to be specified or removed in the
database root file. If the specified per−cache backing store directory is removed, the per−database backing
store directory will be used and if the specified per−database backing store directory is removed, the root file
device and directory will be the default backing store location. When the RMU/RESTORE,
RMU/COPY_DATABASE and RMU/MOVE_AREA commands are used to change the location of the
database root file, it would be convenient to be able to also modify the per−database and/or per−cache Row
Cache backing store directories at the same time. This new feature allows an options file to be specified with
the RMU/RESTORE, RMU/COPY_DATABASE and RMU/MOVE_AREA commands to modify and/or
remove the per−database and/or per−cache Row Cache backing store directory specifications.

The following new optional qualifier can be specified with the RMU/RESTORE, RMU/COPY_DATABASE
and RMU/MOVE_AREA commands to specify a Row Cache backing store options file which contains
per−database and/or per−cache Row Cache backing store directory specifications.

/ROW_CACHE_OPTIONS = file_specification

The "file_specification" must be a valid file specification of an existing options file. This qualifier cannot be
negated. The following syntax must be used in the row cache backing store options file.

$ type filename.opt
/BACKING_STORE = device:[directory]
row_cache_name /BACKING_STORE = device:[directory]
row_cache_name /NOBACKING_STORE

To modify or remove the current per−database default backing store location, either "/BACKING_STORE ="
followed by a valid directory specification or "/NOBACKING_STORE" must be specified on the first line
without being preceded by a Row Cache name. To modify or remove a current per−cache backing store
location, an existing Row Cache name currently defined in the database root file must be specified followed
by either "/BACKING_STORE =" followed by a valid directory specification or "/NOBACKING_STORE"
must be specified. The wild card characters "%" and/or "*" can be specified as part of the Row Cache name,
where "*" can be used in the place of one or more contiguous characters and "%" can be used in the place of a
single character. In this case all matching per−cache backing store entries will be modified with the following
"/BACKING_STORE =" or "/NOBACKING_STORE" specification. The RMU/DUMP/HEADER command
can be used to display the current per−database default Row Cache backing store directory as well as the
current per−cache Row Cache backing store directories.

For the RMU/RESTORE command, the /ROW_CACHE_OPTIONS qualifier cannot be used with the
/AREA, /INCREMENTAL, /JUST_CORRUPT, /DUPLICATE or /ONLINE qualifiers. It can be used for a
full or /ONLY_ROOT restore. For the RMU/MOVE_AREA command, the /ROW_CACHE_OPTIONS
qualifier cannot be used with the /ONLINE or /QUIET_POINT qualifiers. It can only be used if the /ROOT
qualifier is specified. For the RMU/COPY_DATABASE command, the /ROW_CACHE_OPTIONS qualifier

8.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.1 195

cannot be used with the /ONLINE, /QUIET_POINT or /DUPLICATE qualifiers.

The following example shows the RMU/RESTORE, RMU/MOVE_AREA, and RMU/COPY_DATABASE
commands used with the /ROW_CACHE_OPTIONS qualifier to read backing store directory options files to
modify or remove the current per−database and per−cache Row Cache backing store directories in the
database root file. The contents of the options file read is displayed when the command is executed and the
RMU/DUMP/HEADER command is used to check the modified backing store directories in the database root
file.

$ SET VERIFY
$ RMU/RESTORE/NOCDD/NOLOG/DIR=TEST$DIRECTORY−
 /ROW_CACHE_OPTIONS=TEST$DIRECTORY:BSTORE.OPT −
 TEST$DIRECTORY:RSA.RBF
%RMU−I−RESTXT_18, Processing options file BSTORE.OPT
 /BACKING_STORE=DISK:[DIRECTORY]
 SAL_CACHE /BACKING_STORE=DISK:[DIRECTORY]
 JOB_CACHE/BACKING_STORE=DISK:[DIRECTORY]
 DROP_CACHE /BACKING_STORE=DISK:[DIRECTORY]

$ RMU/DUMP/HEADER/OUT=HDR.LIS TEST$DIRECTORY:RMU_SET_RCACHE_ALTER_DB
$ SEARCH HDR.LIS "DEFAULT BACKING FILE DIRECTORY"
 Default backing file directory is "DISK:[DIRECTORY]"
$ SEARCH HDR.LIS "CACHE FILE DIRECTORY"
 − Cache file directory is "DISK:[DIRECTORY]"
 − Cache file directory is "DISK:[DIRECTORY]"
 − Cache file directory is "DISK:[DIRECTORY]"
$ RMU/MOVE_AREA/NOLOG/DIRECTORY=DISK:[DIRECTORY]−
 /ROOT=DISK:[DIRECTORY]FILENAME.EXT
 /ROW_CACHE_OPTIONS=TEST$DIRECTORY:WBSTORE.OPT −
 TEST$DIRECTORY:RMU_SET_RCACHE_ALTER_DB
%RMU−I−RESTXT_18, Processing options file WBSTORE.OPT
 *CACHE /BACKING_STORE=DISK:[DIRECTORY]

$ RMU/DUMP/HEADER/OUT=HDR.LIS DISK:[DIRECTORY]FILENAME.EXT
$ SEARCH HDR.LIS "DEFAULT BACKING FILE DIRECTORY"
 Default backing file directory is "DISK:[DIRECTORY]"
$ SEARCH HDR.LIS "CACHE FILE DIRECTORY"
 − Cache file directory is "DISK:[DIRECTORY]"
 − Cache file directory is "DISK:[DIRECTORY]"
 − Cache file directory is "DISK:[DIRECTORY]"
$ RMU/COPY_DATABASE/NOLOG/DIRECTORY=DISK:[DIRECTORY]−
 /ROW_CACHE_OPTIONS=TEST$DIRECTORY:NOBSTORE.OPT −
 TEST$DIRECTORY:RMU_SET_RCACHE_ALTER_DB
%RMU−I−RESTXT_18, Processing options file NOBSTORE.OPT
 /NOBACKING_STORE
 SAL_CACHE /NOBACKING_STORE
 JOB_CACHE/NOBACKING_STORE
 DROP_CACHE /NOBACKING_STORE

$ RMU/DUMP/HEADER/OUT=HDR.LIS DISK:[DIRECTORY]FILENAME.EXT
$ SEARCH HDR.LIS "DEFAULT BACKING FILE DIRECTORY"
 Default backing file directory is database directory
$ SEARCH HDR.LIS "CACHE FILE DIRECTORY"
 − Derived cache file directory is "DISK:[DIRECTORY]"
 − Derived cache file directory is "DISK:[DIRECTORY]"
 − Derived cache file directory is "DISK:[DIRECTORY]"

Oracle® Rdb for OpenVMS

8.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.1 196

8.1.2 New RMU/REPAIR Options File to Initialize Database
Snapshot Files

The Oracle Rdb RMU "RMU/REPAIR/INITIALIZE=SNAPSHOTS" command currently allows the user to
create and/or initialize new snapshot files when a snapshot file is deleted or corrupted. The
"RMU/REPAIR/INITIALIZE=SNAPSHOTS=CONFIRM" command prompts the user not only to initialize
snapshot files but also to optionally rename, move, or change the allocation of snapshot files. The "/AREAS"
qualifier can also be specified to only initialize the snapshot files associated with the specified list of storage
area names. This new feature allows the use of an options file with RMU/REPAIR to initialize snapshot files.
This allows the user to avoid prompts for each snapshot file to be initialized and makes it more convenient to
initialize a large number of options files in one RMU/REPAIR command.

The following optional new syntax can be specified with the RMU/REPAIR command to use an options file
to initialize snapshot files.

/INITIALIZE=SNAPSHOTS=OPTIONS=file_specification

The "file_specification" must be the valid file specification of an existing options file. This qualifier cannot be
negated. The following syntax must be used in the specified options file.

$ type filename.opt
storage_area [/SNAPSHOT=([FILE=file_specification][,][ALLOCATION=n])]

In the above, "storage_area" specifies the name of the storage area which uses the snapshot file. The
"RMU/DUMP/HEADER" command can be used to display the storage area names contained in the database
root file − see 'Snapshot area for storage area "storage_area"'. "FILE=file_specification" specifies an optional
new file specification for the snapshot file. The "RMU/DUMP/HEADER" command can be used to display
the snapshot file specifications contained in the database root file − see 'Filename is
"device:[directory]name.SNP;1"'. The snapshot file specification cannot be changed for a single file database.
"ALLOCATION=n" specifies an optional new page count allocation size for the snapshot file. By specifying
a new allocation for a snapshot file, you can truncate a snapshot file or make it larger. The
"RMU/DUMP/HEADER" command can be used to display the allocation size for the snapshot file − see
"Current physical page count is n". Note that if the "/AREAS" qualifier is used in the same RMU/REPAIR
command with "/INITIALIZE=SNAPSHOTS=OPTIONS=file_specification" it will be in effect for other
RMU/REPAIR options but will be ignored for the "/INITIALIZE=SNAPSHOTS" option since the options file
specifies the storage areas that use the snapshot files to be initialized.

In the following example, "SET VERIFY" is specified to display the contents of the JUST_AREA.OPT
options file which specifies that the snapshot files for the departments, jobs and salary_history storage areas in
the MF_PERSONNEL database are to be initialized. Since the JOBS.SNP snapshot file has been deleted, it
will be created before it is initialized. The current snapshot file specifications and allocations are used. An
RMU/VERIFY of MF_PERSONNEL is done after the repair to verify the integrity of the database.

$ set verify
$ del jobs.snp;*
$ dir jobs.snp
%DIRECT−W−NOFILES, no files found
$!
$ RMU/REPAIR/INIT=SNAPSHOTS=OPTIONS=JUST_AREA.OPT MF_PERSONNEL
%RMU−I−FULBACREQ, A full backup of this database should be
 performed after RMU REPAIR
 departments

Oracle® Rdb for OpenVMS

8.1.2 New RMU/REPAIR Options File to Initialize Database Snapshot Files 197

 jobs
 salary_history
$!
$ dir jobs.snp

Directory DEVICE:[DIRECTORY]

JOBS.SNP;1

Total of 1 file.

$ RMU/VERIFY/ALL/NOLOG MF_PERSONNEL
$

In the following example, "SET VERIFY" is specified to display the contents of the AREA_SNAP.OPT
options file which specifies that the snapshot files for the departments, jobs and salary_history storage areas in
the MF_PERSONNEL database are to be initialized with a new file specification and page count allocation.
An RMU/VERIFY of MF_PERSONNEL is done after the repair to verify the integrity of the database.

$ set verify
$ RMU/REPAIR/INIT=(SNAPSHOTS=OPTIONS=AREA_SNAP.OPT) MF_PERSONNEL
%RMU−I−FULBACREQ, A full backup of this database should be
 performed after RMU REPAIR
 departments /snapshot=(file=new_dept,allocation=200)
 jobs /snapshot=(file=new_jobs,allocation=210)
 salary_history /snapshot=(file=new_sal_hist,allocation=220)
$ RMU/VERIFY/ALL/NOLOG MF_PERSONNEL
$

8.1.3 RDMSTT Image Optionally Installed

Bug 3981803

If you plan on using the cluster capability of RMU/SHOW STATISTICS, Oracle recommends that you install
the RDMSTT72.EXE image on OpenVMS with the appropriate privileges.

For Oracle Rdb Release 7.2.5.1 and later, the RMONSTART72.COM command procedure has been modified
to optionally install the RDMSTT72.EXE image at monitor startup time. To take advantage of this, you will
need to edit the RMONSTART72.COM procedure and remove the comment characters from the following
lines:

$! DEFX SYS$COMMON:[SYSEXE]RDMSTT72.EXE
$! REMOVEX
$! ADDX /OPEN/HEAD/PROT/PRIV=(CMKRNL,SYSPRV,SHARE)

Also, edit the RMONSTOP72.COM procedure and remove the comment characters from the following lines:

$! DEFX SYS$COMMON:[SYSEXE]RDMSTT72.EXE
$! REMOVEX

This feature has been added to Oracle Rdb Release 7.2.5.1.

Oracle® Rdb for OpenVMS

8.1.3 RDMSTT Image Optionally Installed 198

8.1.4 RMU Show Statistics Now Includes New Rdb
Executive Statistics

This release of Oracle Rdb changes the RMU Show Statistics command in the following ways:

The Rdb Executive Statistics screen now includes two new items: "request create" and "request
release".
These statistics closely correspond to the dynamic SQL DECLARE CURSOR and RELEASE
statements. In general, interactive SQL will create and release a request for each interactive query,
unless it is a cursor which will be retained until DISCONNECT. Compiled (SQL$MOD or
SQL$PRE) applications will release queries only upon DISCONNECT (unless they are using
dynamic SQL).
The statistic "request create" counts the loading of a query, stored procedure, or stored function. The
statistic "request release" counts the release of such requests (which will include release of virtual
memory and release of metadata locks). Note that these statistics will also include queries executed by
the SQL runtime environment.

•

The statistic named "queries compiled" has been renamed as "subquery compiles" to better describe
its function. Any configuration file which uses the old name will need to be changed. The new
"request create" is a better metric if a count of compiled queries is required.
This statistic is incremented when each table context is compiled, such as each branch of a UNION,
join or nested subquery.

•

Oracle® Rdb for OpenVMS

8.1.4 RMU Show Statistics Now Includes New Rdb Executive Statistics 199

Chapter 9
Enhancements And Changes Provided in Oracle
Rdb Release 7.2.5.0

Chapter 9Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.0 200

9.1 Enhancements And Changes Provided in
Oracle Rdb Release 7.2.5.0

9.1.1 RMU /SHOW STATISTICS /ROWS= and /COLUMNS=
Feature

Previously, it was not possible to use the RMU /SHOW STATISTICS and specify the number of display rows
and columns. The values would default to the user's display or, in the case of non−interactive mode, 132
columns and 66 rows.

This problem has been corrected in Oracle Rdb Release 7.2.5. RMU /SHOW STATISTICS includes the new
qualifiers /ROWS=n and /COLUMNS=n to allow the user to specify the desired number of display rows and
columns. The existing minimum and maximum limits apply as enforced by the SMG run time library or the
RMU /SHOW STATISTICS utility.

9.1.2 New LIMIT Clauses Implemented for the CREATE and
ALTER PROFILE Statement

In prior versions of Oracle Rdb, the LIMIT clauses of the CREATE PROFILE statement and the ALTER
PROFILE statement were incomplete. These clauses are now active in this release of Rdb.

The following information replaces the description of these clauses in the current Oracle Rdb SQL Reference
Manual, Volume 2 for the CREATE PROFILE Statement.

Arguments

LIMIT CPU TIME
LIMIT CPU TIME sets the maximum CPU time that can be used by the query compiler. The keyword
DEFAULT indicates that no value is defined by this profile and is equivalent to NO LIMIT CPU
TIME.
If a numeric value or the keyword UNLIMITED is specified then this value will be used even when
the SET QUERY LIMIT CPU TIME statement is present in the session, or when the logical name
RDMS$BIND_QG_CPU_TIMEOUT is defined.
NO LIMIT CPU TIME is the default. Units can be specified as seconds or minutes.

•

LIMIT TIME
LIMIT TIME sets the maximum elapsed time that can be used by the query compiler. The keyword
DEFAULT indicates that no value is defined by this profile and is equivalent to NO LIMIT TIME.
If a numeric value or the keyword UNLIMITED is specified then this value will be used even when
the SET QUERY LIMIT TIME statement is present in the session, or when the logical name
RDMS$BIND_QG_TIMEOUT is defined.
NO LIMIT TIME is the default. Units can be specified as seconds or minutes.

•

LIMIT ROWS
LIMIT ROWS sets the maximum number of rows that can be returned by a query started by the user.
The keyword DEFAULT indicates that no value is defined by this profile and is equivalent to NO
LIMIT ROWS.
If a numeric value or the keyword UNLIMITED is specified then this value will be used even when

•

9.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.0 201

the SET QUERY LIMIT ROWS statement is present in the session, or when the logical name
RDMS$BIND_QG_REC_LIMIT is defined.
NO LIMIT ROWS is the default.

Examples

This example shows the use of the LIMIT clauses to set boundaries for standard database users.

SQL> create profile STANDARD_USER
cont> limit rows 10000
cont> limit time 10 minutes
cont> limit cpu time 20 seconds;
SQL> show profile STANDARD_USER;
 STANDARD_USER
 Limit rows 10000
 Limit time 10 minutes
 Limit CPU time 20 seconds
SQL> alter profile STANDARD_USER
cont> limit time 60 minutes;

Usage Notes

The logical names RDMS$BIND_QG_REC_LIMIT, RDMS$BIND_QG_TIMEOUT, and
RDMS$BIND_QG_CPU_TIMEOUT establish the process defaults for the query limit.

•

The command SET QUERY LIMIT establishes the session default (unless already set by the query
governor logical names).

•

The profile LIMIT will either use these established defaults (LIMIT ... DEFAULT or NO LIMIT) or
override them (LIMIT ... UNLIMITED or specified value).

•

9.1.3 Use of RMS MBC Larger Than 127

This release of Oracle Rdb takes advantage of OpenVMS enhancements permitting values of the RMS Multi
Block Count (MBC) parameter to be up to 255 blocks (the prior limit was 127 blocks). With this change,
some disk−based file read and write operations performed by Oracle Rdb may require half of the IO resources
as compared with prior releases by allowing RMS to do larger IO transfers.

Oracle Rdb now anticipates that OpenVMS patch(es) have been installed that support using an RMS Multi
Block Count (MBC) parameter larger than 127 blocks. Oracle Rdb will first attempt to use a larger value and
if an RMS$_MBC error is returned from the SYS$CONNECT call, a second attempt is made with a RMS
Multi Block Count (MBC) parameter of less than 128.

In order to receive the IO performance improvements available when accessing sequential files when using an
RMS Multi Block Count (MBC) parameter larger than 127 blocks, the following patches (or their subsequent
replacements) are required to be installed:

VMS84I_UPDATE−V0400 or later•
VMS84A_UPDATE−V0400 or later•
VMS831H1I_SYS−V1200 or later•
VMS83I_SYS−V1500 or later•
VMS83A_SYS−V1800 or later•

Oracle® Rdb for OpenVMS

9.1.3 Use of RMS MBC Larger Than 127 202

Oracle recommends installing OpenVMS patches that permit values of the RMS Multi Block Count (MBC)
parameter to be up to 255 blocks for best performance and functionality.

9.1.4 New Optimizations for the LIKE Predicate

Bugs 3516321, 9931047 and 9910624

This release of Oracle Rdb will try to rewrite the LIKE predicate when the LIKE pattern is a string literal.
This enhancement allows Rdb to simplify some LIKE expressions resulting in reduced I/O and CPU time
required to satisfy these queries.

When the LIKE pattern is only the "%" character (which matches one or more characters in the source
string) then this will be replaced with an OCTET_LENGTH (...) >= 0 condition that does not require
any pattern matching. Note that a string of "%" wildcards, such as "%%%%%", behaves in the same
way as a single "%" character. Therefore, the same optimization is applied when any number of
trailing % wildcards are detected.

SQL> select count(*)
cont> from employees
cont> where middle_initial like '%';
Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (*)
Conjunct: OCTET_LENGTH (0.MIDDLE_INITIAL) >= 0
Get Retrieval sequentially of relation 0:EMPLOYEES

 64
1 row selected
SQL>

•

When the LIKE pattern is only a series of "_" characters (one or more) and the pattern length is the
same size as the CHAR source expression, or the VARCHAR source expression matches the length of
the pattern, then this will be replaced with an OCTET_LENGTH (...) = n condition that does not
require any pattern matching.
The following example shows a LIKE match against a fixed length CHAR column STATUS_NAME.

SQL> select status_name
cont> from work_status
cont> where status_name like '________';
Tables:
 0 = WORK_STATUS
Conjunct: OCTET_LENGTH (0.STATUS_NAME) = 8
Get Retrieval sequentially of relation 0:WORK_STATUS
 STATUS_NAME
 INACTIVE
 ACTIVE
 ACTIVE
3 rows selected
SQL>

The following example shows the string matching the variable length VARCHAR value which is six
octets in length.

SQL> −− Find six character LAST_NAME values
SQL> select first_name, middle_initial, last_name

•

Oracle® Rdb for OpenVMS

9.1.4 New Optimizations for the LIKE Predicate 203

cont> from candidates
cont> where last_name like '______';
Tables:
 0 = CANDIDATES
Conjunct: OCTET_LENGTH (0.LAST_NAME) = 6
Get Retrieval sequentially of relation 0:CANDIDATES
 FIRST_NAME MIDDLE_INITIAL LAST_NAME
 Oscar M. Wilson
1 row selected
SQL>

When the LIKE pattern starts with a string not containing wildcard characters ("%", "_", or program
supplied escape character) but followed by only the "%" wildcard, then Oracle Rdb can replace this
with the STARTING WITH operator.

SQL> select employee_id, first_name, last_name
cont> from employees
cont> where last_name like 'Smith%';
Tables:
 0 = EMPLOYEES
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: 0.LAST_NAME STARTING WITH 'Smith'
 BgrNdx1 EMPLOYEES_LAST_NAME [1:1] Fan=14
 Keys: 0.LAST_NAME STARTING WITH 'Smith'
 EMPLOYEE_ID FIRST_NAME LAST_NAME
 00165 Terry Smith
 00209 Roger Smith
2 rows selected
SQL>

Note

Oracle Rdb has for some time made use of pattern prefix strings to start index
scans when possible. This feature is now highlighted in the STRATEGY output by
displaying "(Starting With)" after the LIKE predicate for the index keys. This
optimization is applied to string literals, column references, host variables, and
other string expressions.

SQL> declare :patt varchar(10) = 'Smit%';
SQL> select employee_id, first_name, last_name
cont> from employees
cont> where last_name like :patt;
Tables:
 0 = EMPLOYEES
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: 0.LAST_NAME LIKE <var0>
 BgrNdx1 EMPL_LAST_NAME [1:1] Fan=12
 Keys: 0.LAST_NAME LIKE <var0> (Starting With)
 Bool: 0.LAST_NAME LIKE <var0>
 EMPLOYEE_ID FIRST_NAME LAST_NAME
 00165 Terry Smith
 00209 Roger Smith
2 rows selected
SQL>

Conversely, if the LIKE pattern string literal has leading wildcards, then this optimization will be
disabled since we know during query compile that such an optimization would provide no benefit and
thus we save CPU time for such queries.

•

Oracle® Rdb for OpenVMS

9.1.4 New Optimizations for the LIKE Predicate 204

SQL> select employee_id, first_name, last_name
cont> from employees
cont> where last_name like '%Smith%';
Tables:
 0 = EMPLOYEES
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: 0.LAST_NAME LIKE '%Smith%'
 BgrNdx1 EMPL_LAST_NAME [0:0] Fan=12
 Keys: 0.LAST_NAME LIKE '%Smith%'
 Bool: 0.LAST_NAME LIKE '%Smith%'
 EMPLOYEE_ID FIRST_NAME LAST_NAME
 00165 Terry Smith
 00209 Roger Smith
2 rows selected
SQL>

When the LIKE pattern does not contain any wildcard characters, then the LIKE may be converted to
an equals condition with a restriction on the length. In general, this produces better query strategies as
it allows leading index segments to be matched, where in prior versions this LIKE reference would
terminate the partial key construction.

SQL> select count (*)
cont> from employees
cont> where sex like 'F';
Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (*)
Conjunct: 0.SEX = 'F'
Get Retrieval by index of relation 0:EMPLOYEES
 Index name EMPLOYEES_LAST_NAME [0:0]

 35
1 row selected
SQL>

This example uses a CANDIDATES table where the LAST_NAME column is an indexed
VARCHAR type. Observe that the LIKE was transformed to an equals condition that enabled a direct
index lookup.

SQL> select last_name, first_name
cont> from CANDIDATES
cont> where last_name like 'Wilson';
Tables:
 0 = CANDIDATES
Leaf#01 FFirst 0:CANDIDATES Card=3
 Bool: (0.LAST_NAME = 'Wilson') AND (OCTET_LENGTH (0.LAST_NAME) = 6)
 BgrNdx1 CAND_LAST_NAME [1:1] Fan=12
 Keys: 0.LAST_NAME = 'Wilson'
 LAST_NAME FIRST_NAME
 Wilson Oscar
1 row selected

•

The RDMS$SET_FLAGS logical name or the SQL SET FLAGS statement can disable this default behavior
by using the 'NOREWRITE(LIKE)' keywords. The default is SET FLAGS 'REWRITE(LIKE)'.

Oracle® Rdb for OpenVMS

9.1.4 New Optimizations for the LIKE Predicate 205

9.1.5 Additional Database Storage Area Checks

In rare cases generally involving concealed logical names or in a cluster environment, it was possible to
construct cases where two physical databases could access the same storage area file in an uncoordinated
fashion. This access could lead to data corruption.

The steps required for this type of uncoordinated access would include a database restore or copy likely in a
cluster environment. Because the databases shared the same original creation time stamp, so too would the
storage area. Oracle Rdb would not detect that the storage areas were for physically separate databases.

This problem has been corrected in Oracle Rdb Release 7.2.5. Oracle Rdb now stores a time stamp of the
physical database creation (via copy, restore or create) in the database root file and each storage area file.
Each new access to a storage area compares the time stamp of the database root file and the storage area file to
further ensure that they are part of the same physical database. If a mismatch is detected, the message
INVDBSFIL "inconsistent storage area file" is signaled.

9.1.6 New Optimizations for the STARTING WITH Predicate

This release of Oracle Rdb will try to rewrite the STARTING WITH predicate when the STARTING WITH
string is a literal. This enhancement allows Rdb to simplify some STARTING WITH expressions resulting in
better index use and usually reducing I/O and CPU time requirements for these queries.

When the STARTING WITH string is a zero length literal value then it will cause the STARTING
WITH to match all non−NULL values. This can cause an unnecessary favoring of an index lookup
which consumes CPU time with little advantage to the application.

•

When the STARTING WITH string literal is the exact length of the source expression then complete
non−NULL values are selected and Rdb can replace the STARTING WITH with an equality (=)
predicate.

SQL> select last_name, first_name
cont> from employees
cont> where last_name starting with 'Smith ';
Tables:
 0 = EMPLOYEES
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: 0.LAST_NAME = 'Smith '
 BgrNdx1 EMPLOYEES_LAST_NAME [1:1] Fan=12
 Keys: 0.LAST_NAME = 'Smith '
 LAST_NAME FIRST_NAME
 Smith Terry
 Smith Roger
2 rows selected

•

The RDMS$SET_FLAGS logical name or the SQL SET FLAGS statement can disable this default behavior
by using the 'NOREWRITE(STARTING_WITH)' keywords. The default is SET FLAGS
'REWRITE(STARTING_WITH)';

9.1.7 New Optimizations for the CONTAINING Predicate

This release of Oracle Rdb will try to rewrite the CONTAINING predicate when the CONTAINING string is
a literal value. This enhancement allows Rdb to simplify some CONTAINING expressions resulting in better

Oracle® Rdb for OpenVMS

9.1.5 Additional Database Storage Area Checks 206

index use and usually reducing I/O and CPU time requirements for these queries.

When the CONTAINING string is a zero length literal value then it will cause the CONTAINING to
match all non−NULL values. This can consume CPU time with little advantage to the application.
This is replaced by a semantically equivalent OCTET_LENGTH function reference.

•

The RDMS$SET_FLAGS logical name or the SQL SET FLAGS statement can disable this default behavior
by using the 'NOREWRITE(CONTAINING)' keywords. The default is SET FLAGS
'REWRITE(CONTAINING)'.

9.1.8 Monitor Memory Management Enhancements

Previously, the Oracle Rdb Monitor (RDMMON) process would map each database global (TROOT) section
into P0 virtual address space. This could, in some cases, consume a significant portion of the 1GB available
space and could also result in the virtual address space becoming sufficiently fragmented such that the
monitor would be unable to open a database.

As a possible workaround, the monitor process can be restarted.

The impact of this virtual memory fragmentation has been somewhat reduced. The Oracle Rdb Monitor
(RDMMON) process now maps database global sections (those that use SHARED MEMORY IS PROCESS
or SHARED MEMORY IS PROCESS RESIDENT) into 64−bit P2 virtual address space. In addition, on
OpenVMS Integrity Server systems, the executable code of the Oracle Rdb Monitor (RDMMON) process is
mapped into 64−bit P2 virtual address space further reducing the amount of P0 virtual address space
consumed.

9.1.9 Average Transaction Duration Display Precision
Increased

As systems and applications become faster, it is more common for transaction durations of less than .0000
seconds to be performed. Currently, it is not possible to accurately determine, with the RMU /SHOW
STATISTICS utility, the average duration of such rapid transactions. This condition has been addressed.

The average transaction duration value on the "Transaction Duration" display of the RMU /SHOW
STATISTICS utility has been increased in precision from 4 to 6 fractional digits and the output display
slightly modified to fit into an 80 column display, as in the following example.

Node: RDBTUK (1/1/1) Oracle Rdb V7.2−50 Perf. Monitor 29−SEP−2010 23:10:29.65
Rate: 3.00 Seconds Transaction Duration (Total) Elapsed: 00:00:26.77
Page: 1 of 1 DISK$TUKWILA7:[DB.V72]FOO.RDB;1 Mode: Online
−−−
Total transaction count: 771
Seconds Tx.Count: % #Complete: % #Incomplete: %
 0−< 1: 773 100% 773 100% 0 0% <−avg=0.000192 95%=0.0
 1−< 2: 0 0% 0 0% 0 0%
 2−< 3: 0 0% 0 0% 0 0%
 3−< 4: 0 0% 0 0% 0 0%
 4−< 5: 0 0% 0 0% 0 0%
 5−< 6: 0 0% 0 0% 0 0%
 6−< 7: 0 0% 0 0% 0 0%
 7−< 8: 0 0% 0 0% 0 0%
 8−< 9: 0 0% 0 0% 0 0%

Oracle® Rdb for OpenVMS

9.1.8 Monitor Memory Management Enhancements 207

 9−<10: 0 0% 0 0% 0 0%
 10+++: 0 0% 0 0% 0 0%

9.1.10 Support for New CONCAT_WS Builtin Function

This release of Oracle Rdb adds support for a new builtin function, CONCAT_WS, which is a variation of the
CONCAT function. This function uses the first parameter as a separator which is applied after each of the
other parameters. For instance, to create a comma separated list of column values, you specify the separator
once and have SQL perform the formatting. This is shown in the example below.

SQL> select CONCAT_WS (', ', employee_id, birthday, '',
cont> last_name, middle_initial, last_name)
cont> from employees
cont> order by employee_id
cont> fetch first 10 rows only;

 00164, 1947−03−28, , Toliver , A, Toliver
 00165, 1954−05−15, , Smith , D, Smith
 00166, 1954−03−20, , Dietrich , Dietrich
 00167, 1937−03−05, , Kilpatrick , Kilpatrick
 00168, 1932−10−23, , Nash , Nash
 00169, 1938−08−13, , Gray , O, Gray
 00170, 1957−06−03, , Wood , Wood
 00171, 1932−01−29, , D'Amico , D'Amico
 00172, 1951−05−31, , Peters , K, Peters
 00173, 1927−03−05, , Bartlett , G, Bartlett
10 rows selected
SQL>

Usage Notes

If the separator value expression resolves to NULL, then the result of CONCAT_WS will be NULL.•
If any other parameter value expression resolves to NULL, then it will be ignored. That is, that
column value and any separator will not be included in the output.

•

The function CONCAT_WS accepts all data types with the exception of LIST OF BYTE VARYING,
LONG, and LONG RAW. Each non−character string value will be implicitly converted to
VARCHAR with a size appropriate for the data type.
The result of this function will have the type VARCHAR with a length long enough for the
concatenated data and separators.

•

If dialect ORACLE LEVEL1 or ORACLE LEVEL2 is used, then zero length strings ('') will be
considered as NULL and so be excluded from the output. If the resulting value is a zero length string,
then the result of CONCAT_WS will be NULL.

•

Examples

This example shows the use of the CONCAT_WS function to simplify the formatting of table data in CSV
(comma separated value) format.

SQL> select '"' ||
cont> CONCAT_WS ('", "', first_name, nvl(middle_initial,''), last_name)
cont> || '"'
cont> from employees
cont> order by employee_id;

Oracle® Rdb for OpenVMS

9.1.10 Support for New CONCAT_WS Builtin Function 208

 "Alvin ", "A", "Toliver "
 "Terry ", "D", "Smith "
 "Rick ", "", "Dietrich "
 "Janet ", "", "Kilpatrick "
...
 "Peter ", "", "Blount "
 "Johanna ", "P", "MacDonald "
 "James ", "Q", "Herbener "
100 rows selected
SQL>

9.1.11 New SYSTIMESTAMP Function Added

This release of Oracle Rdb includes a new SYSTIMESTAMP function that returns the current date and time
as a TIMESTAMP type. This function is similar to SYSDATE and CURRENT_TIMESTAMP however its
type doesn't change when the SET DEFAULT DATE FORMAT command is used.

Syntax

SYSTIMESTAMP [(fractional−seconds−precision)]

Usage Notes

The function name can be followed by an optional fractional−seconds−precision. This value, if
omitted, defaults to 2 and accepts the values 0, 1, or 2.

•

The following example shows that SYSTIMESTAMP always returns a SQL standard date and time.

SQL> select systimestamp,sysdate,current_timestamp from rdb$database;

 2007−03−27 16:33:32.19 27−MAR−2007 16:33:32.19 27−MAR−2007 16:33:32.19
1 row selected
SQL> set default date format 'sql99';
SQL> select systimestamp,sysdate,current_timestamp from rdb$database;

 2007−03−27 16:33:41.32 2007−03−27 16:33:41.32 2007−03−27 16:33:41.32
1 row selected
SQL>

•

9.1.12 New SET FLAGS Keyword to Control Optimizer Query
Rewrite

This release of Oracle Rdb introduces several query rewrite optimizations. These optimizations are enabled by
default and can be controlled using the RDMS$SET_FLAGS logical name or the SET FLAGS statement.

The following keywords or keyword parameters can be used. Note that REWRITE, unlike many other SET
FLAGS keywords, does not accept a numeric value.

REWRITE − when no parameters are provided, all query rewrite optimizations are enabled.•
NOREWRITE − when no parameters are provided, all query rewrite optimizations are disabled.•
REWRITE(LIKE), NOREWRITE(LIKE) − specifying the LIKE keyword will enable or disable only
the LIKE predicate rewrite.

•

Oracle® Rdb for OpenVMS

9.1.11 New SYSTIMESTAMP Function Added 209

REWRITE(STARTING_WITH), NOREWRITE(STARTING_WITH) − specifying the
STARTING_WITH keyword will enable or disable only the STARTING WITH predicate rewrite.

•

REWRITE(CONTAINING), NOREWRITE(CONTAINING) − specifying the CONTAINING
keyword will enable or disable only the CONTAINING predicate rewrite.

•

When SET FLAGS 'NONE' or SET NOFLAGS is used, the default setting for REWRITE will be
restored.

•

The following example uses SET and SHOW FLAGS to show the effect of using the NOREWRITE keyword.

SQL> set line length 70
SQL> show flags;

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:
 PREFIX,WARN_DDL,INDEX_COLUMN_GROUP,MAX_SOLUTION,MAX_RECURSION(100)
 ,REWRITE(CONTAINING),REWRITE(LIKE),REWRITE(STARTING_WITH)
 ,REFINE_ESTIMATES(127),NOBITMAPPED_SCAN
SQL>
SQL> set flags 'norewrite';
SQL> show flags;

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:
 PREFIX,WARN_DDL,INDEX_COLUMN_GROUP,MAX_SOLUTION,MAX_RECURSION(100)
 ,REFINE_ESTIMATES(127),NOBITMAPPED_SCAN
SQL>

9.1.13 New SYS_GUID Function Added

This release of Oracle Rdb supports a new builtin function, SYS_GUID. This function returns a 16 octet
globally unique identifier. Applications would use this to provide unique values from various applications and
across databases in an OpenVMS cluster or network.

Syntax

SYS_GUID ()

Usage Notes

This function uses the OpenVMS system service SYS$CREATE_UID. Applications that call this
system service create compatible values for Rdb.

•

The returned value from SYS_GUID() may contain octets that are zero. If returning values to C
applications, then Oracle recommends using the $SQL_VARCHAR pseudo−type to avoid C null
terminated string semantics.

•

The SYS_GUID() returns data using a special character set. This special character set is used by
Oracle Rdb to distinguish this type of string from others. Interactive SQL will format the value using
standard OpenVMS formatting services when this character set is seen. Note that these services
perform reordering of the octet values during formatting. That is, the value is not a direct hexadecimal
representation of the value.
Database administrators can define a domain to be used by applications which will make it easier to
use.

SQL> create domain GUID_DOMAIN

•

Oracle® Rdb for OpenVMS

9.1.13 New SYS_GUID Function Added 210

cont> char(16) character set −11;
SQL>
SQL show domain GUID_DOMAIN;
GUID_DOMAIN CHAR(16)
 GUID 16 Characters, 16 Octets
SQL>

This domain can be used for column, parameter, and variable definitions.
To support storing literal GUID values, SQL also supports GUID literals. The literals follow the
standard literal format using the special prefix _GUID, as shown in the following examples.

SQL> create domain GUID_DOMAIN
cont> char(16) character set −11;
SQL> show domain GUID_DOMAIN;
GUID_DOMAIN CHAR(16)
 GUID 16 Characters, 16 Octets

SQL> create table SAMPLE
cont> (a int
cont> ,b GUID_DOMAIN default _guid'00000000−0000−0000−0000−000000000000');
SQL> insert into SAMPLE default values;
1 row inserted

SQL> show table (column) SAMPLE;
Information for table SAMPLE

Columns for table SAMPLE:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
A INTEGER
B CHAR(16) GUID_DOMAIN
 GUID 16 Characters, 16 Octets
 Oracle Rdb default: GUID'00000000−0000−0000−0000−000000000000'
SQL>

The literal can also be used in queries to select existing rows.

SQL> select * from SAMPLE
cont> where b = _guid'3DBB657F−8513−11DF−9B74−0008029189E7';

•

9.1.14 New COMPRESSION Clause for DECLARE LOCAL
TEMPORARY TABLE Statement

This release of Oracle Rdb enhances the DECLARE LOCAL TEMPORARY TABLE syntax with a new
COMPRESSION option. In prior releases of Rdb, it was not possible to disable row compression for
temporary tables even though doing so might save some compression and decompression CPU time overhead.
In addition, if the data in the temporary table is not compressible, it is possible that the run−length encoding
could increase the resulting row length.

Syntax

Oracle® Rdb for OpenVMS

9.1.14 New COMPRESSION Clause for DECLARE LOCAL TEMPORARY TABLE Statement 211

Parameters

COMPRESSION IS ENABLED
COMPRESSION IS DISABLED
This clause controls the use of run−length compression for rows inserted into this local temporary
table. The default is COMPRESSION IS ENABLED.

•

Usage Notes

In some cases, the data inserted into a local temporary table may not compress and so incur only
overhead in the row. This overhead is used by Rdb to describe the sequence of uncompressible data.
Use COMPRESSION IS DISABLED to prevent Rdb from attempting the compression of such data.

•

Examples

The following example shows a declared local temporary table that will not benefit from compression. The
clause COMPRESSION IS DISABLED is used to reduce the CPU overhead for the table as well as
preventing a possible row size increase because of compression notations.

SQL> declare local temporary table module.scratch0
cont> (averages double precision)
cont> compression is DISABLED
cont> on commit PRESERVE rows
cont> ;
SQL>
SQL> insert into module.scratch0
cont> select avg (char_length (a)) from module.scratch1;
1 row inserted
SQL>
SQL> select * from module.scratch0;
 AVERAGES
 2.100000000000000E+001

9.1.15 New COMPRESSION Clause for CREATE TABLE
Statement

In prior releases of Rdb, it was required that a storage map be created for the table so that row compression

Oracle® Rdb for OpenVMS

9.1.15 New COMPRESSION Clause for CREATE TABLE Statement 212

could be disabled. This release of Oracle Rdb enhances the CREATE TABLE syntax with a new
COMPRESSION option.

Syntax

Parameters

COMPRESSION IS ENABLED
COMPRESSION IS DISABLED
This clause controls the use of run−length compression for rows inserted into this base or temporary
table. The default is COMPRESSION IS ENABLED.

•

Usage Notes

In some cases, the data inserted into a table may not compress and so incur only overhead in the row.
This overhead is used by Rdb to describe the sequence of uncompressible data. Use COMPRESSION
IS DISABLED to prevent Rdb from attempting the compression of such data.

•

Any storage map which specifies the ENABLE COMPRESSION or DISABLE COMPRESSION
clause will override this setting in the table.

•

The COMPRESSION IS clause is not permitted for INFORMATION tables.•

Examples

The following example shows that compression was disabled for the created table. The SHOW TABLE
statement reports the disabled (that is the non−default) setting for compression.

SQL> create table SAMPLE
cont> (ident integer identity
cont> ,sample_value real
cont>)
cont> compression is disabled;
SQL> show table SAMPLE
Information for table SAMPLE

Compression is disabled.
Columns for table SAMPLE:
Column Name Data Type Domain

Oracle® Rdb for OpenVMS

9.1.15 New COMPRESSION Clause for CREATE TABLE Statement 213

−−−−−−−−−−− −−−−−−−−− −−−−−−
IDENT INTEGER
 Computed: IDENTITY
SAMPLE_VALUE REAL

Table constraints for SAMPLE:
 No Constraints found

Constraints referencing table SAMPLE:
 No Constraints found

Indexes on table SAMPLE:
 No Indexes found

Storage Map for table SAMPLE:
 No Storage Map found

Triggers on table SAMPLE:
No triggers found

SQL>

9.1.16 Support for 2 TiB Storage Area Files

OpenVMS Version 8.4 provides support for disk volumes up to 2 TiB in size. The precise maximum volume
size is 4,261,348,350 blocks, which is about 1.98 TiB. Oracle Rdb now supports live and snapshot storage
areas with up to 2,147,483,647 database pages and up to the OpenVMS Version 8.4 file size limit of
4,261,348,350 blocks. In order to utilize a database storage area of more than 2,147,483,647 disk blocks
(approximately 1 TiB), a database page size of greater than 1 is required; in all cases, a database storage area
is limited to 2,147,483,647 pages.

For Oracle Rdb Release 7.2.5, 2 TiB file support is limited to live and snapshot storage areas. Future Oracle
Rdb releases are expected to expand this support to cover additional on−disk component files.

Note

The tebibyte is a standards−based binary multiple (prefix tebi, symbol Ti) of the byte, a unit
of digital information storage. The tebibyte unit symbol is TiB.

 1 tebibyte = 2^40 bytes = 1099511627776 bytes = 1024 gibibytes

The tebibyte is closely related to the terabyte, which is defined as 10^12 bytes or
1000000000000 bytes, but has been used as a synonym for tebibyte in some contexts.

9.1.17 New RMU/ALTER Feature to Modify the Root and
Area Header Unique Identifier

To ensure Oracle Rdb database security and integrity, a Unique Identifier has been added to the database root
file and the database storage area file and storage area snapshot file headers. The Unique Identifier in the root

Oracle® Rdb for OpenVMS

9.1.16 Support for 2 TiB Storage Area Files 214

file must match the Unique Identifier in the storage area file headers or a storage area cannot be accessed from
the database root. The RMU/ALTER command has been enhanced to allow a Database Administrator to
modify and display the database root and storage area Unique Identifier values to prevent problems which will
occur if these values are corrupted.

The Unique Identifier values are displayed both in VMS date format surrounded by quotes and as a
hexadecimal number surrounded by parentheses. The values displayed are the Unique Identifier values for the
current RMU/ALTER session. The Unique Identifier values will not be written to the root or storage area files
until the user ends the current session with the RMU/ALTER "COMMIT" command. If the user ends the
current session with the RMU/ALTER "ROLLBACK" command, the Unique Identifier values will not be
written to the root or storage area files and the Unique Identifier values in effect at the start of the session just
ended will be restored for the new session. Any Unique Identifier values that have been changed during the
current session will be displayed as "(marked)" before they are committed or rolled back.

The new syntax, which can only be used at the "RdbALTER>" prompt which appears when the RMU/ALTER
command is issued at the VMS prompt, is the following where "name" is the storage area name and "id" is the
storage area identification number in the database root file. "AREA_HEADER" refers to the storage area file
header. "ROOT" refers to the Rdb database root file (*.RDB). "UNIQUE_IDENTIFIER" refers to the Unique
Identifier in the storage area header when used with "AREA_HEADER" and to the Unique Identifier in the
database root when used with "ROOT". If "SNAPSHOT" is not specified, the storage area (*.RDA) file is
assumed. If "SNAPSHOT" is specified, the snapshot storage area (*.SNP) file is assumed. The user cannot
specify a new "UNIQUE_IDENTIFIER" value: it must be created by RMU/ALTER.

DISPLAY ROOT UNIQUE_IDENTIFIER

This command displays the current database root Unique Identifier value.

DEPOSIT ROOT UNIQUE_IDENTIFIER (= NEW)

If "= NEW" is not specified, this command stores the current database root Unique Identifier value into the
storage area header blocks of ALL active storage area and storage area snapshot files which are currently
defined in the database root when the user executes the next COMMIT command. If "= NEW" is specified, a
new Unique Identifier value is created and stored in both the root file and ALL active storage area file headers
when the user executes the next COMMIT command. Note that to ensure database integrity, ALL storage area
file headers will be updated. Use the AREA_HEADER commands described below for storing the current
root Unique Identifier value in specific designated storage areas.

DISPLAY AREA_HEADER {name|id} (SNAPSHOT) UNIQUE_IDENTIFIER

This command displays the current storage area file or storage area snapshot file header Unique Identifier
value for the storage area with the specified name or number.

DEPOSIT AREA_HEADER {name|id} (SNAPSHOT) UNIQUE_IDENTIFIER

This command stores the current database root Unique Identifier value into the current storage area file or
storage area snapshot file header for the storage area with the specified name or number when the user
executes the next COMMIT command.

As stated above, any changes to the area header or root Unique Identifier values will only be written to the
actual root and area files when the next "COMMIT" command is executed at the "RdbALTER>" prompt. Any
changes to the root or area file headers since the last "COMMIT" command was issued can be undone by

Oracle® Rdb for OpenVMS

9.1.16 Support for 2 TiB Storage Area Files 215

executing the "ROLLBACK" command at the "RdbALTER>" prompt. "COMMIT" and "ROLLBACK" are
existing RMU/ALTER commands and affect any current uncomitted changes made in RMU/ALTER, not just
changes to the root and storage area header Unique Identifier values.

To execute the DISPLAY or DEPOSIT ROOT or AREA_HEADER command, the user must be attached to
the database which the root and areas belong to, either by specifying the database name when issuing the
RMU/ALTER command or by executing the "ATTACH" command from the "RdbALTER>" prompt.

The following example shows that for Oracle Rdb single file databases, the Unique Identifier value can only
be set for the storage area snapshot file since the storage area is part of the root file. Therefore, the DEPOSIT
AREA_HEADER command can only specify the "SNAPSHOT" file or an error will be returned.

$ RMU/ALTER PERSONNEL
%RMU−I−ATTACH, now altering database
"DEVICE:[DIRECTORY]PERSONNEL.RDB;1"
 DEPOSIT AREA_HEADER RDB$SYSTEM UNIQUE_IDENTIFIER
%RMU−F−NOTSFDB, This command is not allowed for a single file
 database
 DEPOSIT AREA_HEADER RDB$SYSTEM SNAPSHOT UNIQUE_IDENTIFIER
Area RDB$SYSTEM:
(marked) Root file unique identifier is: "22−OCT−2010 13:49:29.32"
 (00AA557869612643)

 COMMIT
 EXIT

Since the DEPOSIT ROOT UNIQUE_IDENTIFIER command always stores the Unique Identifier value in
ALL storage area file headers when the user executes the RMU/ALTER "COMMIT" command, it would be
redundant to execute the DEPOSIT AREA_HEADER UNIQUE_IDENTIFIER command if a DEPOSIT
ROOT UNIQUE_IDENTIFIER command is already pending for the current RMU/ALTER session.
Therefore, as the following example shows, in this case a DEPOSIT AREA_HEADER
UNIQUE_IDENTIFIER command cannot be executed until the user ends the current session with a COMMIT
or ROLLBACK command.

$ RMU/ALTER MF_PERSONNEL
%RMU−I−ATTACH, now altering database
 "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"
 DEPOSIT ROOT UNIQUE_IDENTIFIER = NEW
(marked) Root file unique identifier is: "22−OCT−2010 13:49:31.72"
 (00AA55786ACFB115)

 DEPOSIT AREA_HEADER SALARY_HISTORY UNIQUE_IDENTIFIER
%RMU−F−COMROOTCOM, COMMIT or ROLLBACK DEPOSIT ROOT
 UNIQUE_IDENTIFIER command to use this command
 commit
 DEPOSIT AREA_HEADER SALARY_HISTORY UNIQUE_IDENTIFIER
Area SALARY_HISTORY:
(marked) Root file unique identifier is: "22−OCT−2010 13:49:31.72"
 (00AA55786ACFB115)

 COMMIT
 EXIT

The following example shows that RMU/ALTER is invoked specifying the database
MF_PERSONNEL.RDB. The user then displays the current Unique Identifier value in the database root,
creates a new Unique Identifier value in the database root, displays the new Unique Identifier in the root, and

Oracle® Rdb for OpenVMS

9.1.16 Support for 2 TiB Storage Area Files 216

finally specifies "commit" to write the new Unique Identifier value to the database root file and ALL database
storage area files. The display messages designate the pending new Unique Identifier value as "(marked)"
until the user either executes "commit" to write out the new Unique Identifier value or "rollback" to restore
the original Unique Identifier value. The user then verifies the database changes.

$ RMU/ALTER MF_PERSONNEL
%RMU−I−ATTACH, now altering database "DISK:[DIRECTORY]MF_PERSONNEL.RDB;1"
 DISPLAY ROOT UNIQUE_IDENTIFIER
 Root file unique identifier is: "22−OCT−2010 13:49:27.87"
 (00AA5578688428BB)
 DEPOSIT ROOT UNIQUE_IDENTIFIER = NEW
(marked) Root file unique identifier is: "22−OCT−2010 13:49:28.34"
 (00AA557868CC9F7A)
 DISPLAY ROOT UNIQUE_IDENTIFIER
(marked) Root file unique identifier is: "22−OCT−2010 13:49:28.34"
 (00AA557868CC9F7A)
 COMMIT
 EXIT
$ RMU/VERIFY/ALL/NOLOG MF_PERSONNEL

The following example shows that RMU/ALTER is invoked specifying the database
MF_PERSONNEL.RDB. The user then displays the current Unique Identifier value in the root file. He then
executes the "deposit" commands to designate that the Unique Identifer value in the root file is to be moved to
the DEPARTMENTS area storage and the DEPARTMENTS area snapshot files, displays the Unique
Identifier value that is to be moved to the DEPARTMENTS area storage and the DEPARTMENTS area
snapshot files, and finally specifies "commit" to actually write the root unique identifier value to the
DEPARTMENTS area storage and the DEPARTMENTS area snapshot files. The display messages designate
the pending Unique Identifier value as "(marked)" until the user either executes "commit" to write out the
Unique Identifier value or "rollback" to restore the original Unique Identifier value. The user then verifies the
database changes. The example shows that the user can use either the storage area name or the storage area
identifier number in the root to designate the target storage area.

$ RMU/ALTER MF_PESONNEL
%RMU−I−ATTACH, now altering database "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"
 DISPLAY ROOT UNIQUE_IDENTIFIER
 Root file unique identifier is: "22−OCT−2010 13:49:28.34"
 (00AA557868CC9F7A)

 DEPOSIT AREA_HEADER DEPARTMENTS UNIQUE_IDENTIFIER
Area DEPARTMENTS:
(marked) Root file unique identifier is: "22−OCT−2010 13:49:28.34"
 (00AA557868CC9F7A)

 DEPOSIT AREA_HEADER 2 SNAPSHOT UNIQUE_IDENTIFIER
Area DEPARTMENTS:
(marked) Root file unique identifier is: "22−OCT−2010 13:49:28.34"
 (00AA557868CC9F7A)

 DISPLAY AREA_HEADER DEPARTMENTS UNIQUE_IDENTIFIER
Area DEPARTMENTS:
(marked) Root file unique identifier is: "22−OCT−2010 13:49:28.34"
 (00AA557868CC9F7A)

 DISPLAY AREA_HEADER 2 SNAPSHOT UNIQUE_IDENTIFIER
Area DEPARTMENTS:
(marked) Root file unique identifier is: "22−OCT−2010 13:49:28.34"
 (00AA557868CC9F7A)

Oracle® Rdb for OpenVMS

9.1.16 Support for 2 TiB Storage Area Files 217

 COMMIT
 EXIT
$ RMU/VERIFY/ALL/NOLOG MF_PERSONNEL

9.1.18 New MATCHING Predicate

This release of Oracle Rdb supports MATCHING as an alternate string pattern matching clause.

Syntax

A MATCHING predicate searches character string literals for pattern matches. The pattern string accepts the
following pattern characters:

* Matches any string of zero or more characters•
% Matches any single character•

Usage Notes

If either of the expressions is null, the result is null.•
The MATCHING predicate is not case sensitive; it considers uppercase and lowercase forms of the
same character to be a match.

•

The MATCHING predicate is not sensitive to diacritical markings used in the DEC Multinational
Character Set.

•

The following example shows the use of the MATCHING clause.

SQL> select last_name
cont> from employees
cont> where last_name matching '%on*';
 LAST_NAME
 Connolly
 Lonergan
2 rows selected
SQL>

Oracle® Rdb for OpenVMS

9.1.18 New MATCHING Predicate 218

9.1.19 New RMU/BACKUP−RESTORE Feature to Check
Database Page Integrity

To ensure Oracle Rdb database integrity, a new feature has been added to the RMU/BACKUP and
RMU/RESTORE commands to do a basic integrity check of AIP, ABM and data storage area pages when
they are backed up and when they are restored. SPAM pages are not backed up by RMU/BACKUP but
recreated by RMU/RESTORE based on the page types that are backed up. This basic integrity check will
always happen in order to prevent database corruption.

The basic page checks made are not intended to replace an RMU/VERIFY of the database pages before they
are backed up or after they are restored. If the page checks report problems, the user should immediately do an
RMU/VERIFY of the storage area to get a complete evaluation of the detected problems and any additional
problems that may exist. The page checks made are intended to cause minimal additional overhead to the
backup or restore operation while indicating serious page corruption exists that needs to be investigated using
the RMU/VERIFY and/or RMU/DUMP commands and then corrected. The page checks are necessary so that
page integrity problems can be detected and fixed at backup time or so that page integrity problems can be
reported and fixed after the restore.

The checks made are a check for a valid storage area id number on the page, a check for a non−zero
timestamp on the page, and a check for a page number that is greater than zero and less than or equal to the
maximum page number for the storage area. The diagnostic messages output are the same as the diagnostic
messages output by RMU/VERIFY if these problems are detected. For RMU/BACKUP, the backup is aborted
if any of these checks fail so that the problem can be fixed at backup time. For RMU/RESTORE, the restore
will be aborted only if the page number check fails since RMU/RESTORE cannot continue in this case. The
other problems will be reported but the backup will continue so the problems can then be fixed in the restored
database. Neither the backup or restore operation will be aborted until all the specified checks have been
made.

The following example shows that the backup command is aborted because of a page with an invalid page
number in storage area SALARY_HISTORY. An RMU/VERIFY of the database gives the additional
information of the expected page number where the invalid page number of zero occurs.

$ RMU/BACKUP/NOLOG MF_PERSONNEL.RDB MFP.RBF
%RMU−E−BADPAGRAN, area SALARY_HISTORY
%RMU−E−BADPAGRA2, page number 0 out of range
%RMU−E−BADPAGRA3, expected between 1 and 706
%RMU−F−INVPAGAREA, Aborting command − invalid page 0 in area SALARY_HISTORY
%RMU−F−FATALERR, fatal error on BACKUP
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 21−DEC−2010
 09:30:19.64
$ rmu/verify/all/nolog mf_personnel
%RMU−W−PAGPAGRAN, area SALARY_HISTORY, page 21
 page number out of range
 expected: 21, found: 0

The following database backup example shows all three diagnostics that can be put out by the basic page
validation checks. If any of these checks fail, the backup operation will be aborted.

$ RMU/BACKUP/NOLOG MF_PERSONNEL.RDB MFP.RBF
%RMU−W−PAGBADARE, area RDB$SYSTEM, page 0
%RMU−W−PAGBADAR2, maps incorrect storage area
%RMU−W−PAGBADAR3, expected: 1, found: 3
%RMU−W−PAGTADZER, area RDB$SYSTEM, page 0

Oracle® Rdb for OpenVMS

9.1.19 New RMU/BACKUP−RESTORE Feature to Check Database Page Integrity 219

%RMU−W−PAGTADZE2, contains zero time stamp
%RMU−E−BADPAGRAN, area RDB$SYSTEM
%RMU−E−BADPAGRA2, page number 0 out of range
%RMU−E−BADPAGRA3, expected between 1 and 1012
%RMU−F−INVPAGAREA, Aborting command − invalid page 0 in area RDB$SYSTEM
%RMU−F−FATALERR, fatal error on BACKUP
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 21−DEC−2010 09:39:21.64

The following database restore example shows all three diagnostics that can be put out by the basic page
validation checks. The restore operation will be aborted only if the page number is invalid but the other
reported problems must be corrected.

$ RMU/RESTORE/NOLOG/NOCDD MFP.RBF
%RMU−W−PAGBADARE, area RDB$SYSTEM, page 0
%RMU−W−PAGBADAR2, maps incorrect storage area
%RMU−W−PAGBADAR3, expected: 1, found: 3
%RMU−W−PAGTADZER, area RDB$SYSTEM, page 0
%RMU−W−PAGTADZE2, contains zero time stamp
%RMU−E−BADPAGRAN, area RDB$SYSTEM
%RMU−E−BADPAGRA2, page number 0 out of range
%RMU−E−BADPAGRA3, expected between 1 and 1012
RMU−F−INVPAGAREA, Aborting command − invalid page 0 in area RDB$SYSTEM
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 21−DEC−2010 09:44:01.96

9.1.20 New RMU/DUMP/BACKUP /AREA, /START and /END
Qualifiers

New /AREA, /START and /END qualifiers have been added to the Oracle Rdb RMU/DUMP/BACKUP
command which dumps the contents of an Rdb database backup (*.RBF) file. These qualifiers allow the user
to dump backup file records for a specified storage area and for a specified range of pages within the specified
storage area.

The syntax for the new qualifiers used with the RMU/DUMP/BACKUP command is the following.

/AREA = identity

Only dump the storage area identified by the specified name or ID number. The area name must be the name
of a storage area in the database root file and the area ID number must be a storage area ID number in the
database root file. This information is contained in the "Database Parameters:" section of the backup file
which is output at the start of the dump. Snapshot areas are not contained in the backup file and cannot be
specified. If this qualifier is used without the new /START and /END qualifiers, all page records in the
specified storage area will be output.

/START = number

Only dump pages starting with the specified page number in the specified storage area. This qualifier cannot
be used unless the /AREA qualifier is also specified. If no pages are dumped either the specified page or range
of pages does not exist in the specified area in the backup file, or this qualifier has been used in the same
RMU/DUMP/BACKUP command as an /OPTIONS, /SKIP or /PROCESS qualifier option that has excluded
the specified page or range of pages from the dump. If this qualifier is not used with the new /END qualifier,
all page records in the specified storage area starting with the specified page number will be output.

Oracle® Rdb for OpenVMS

9.1.20 New RMU/DUMP/BACKUP /AREA, /START and /END Qualifiers 220

/END = number

Only dump pages ending with the specified page number in the specified storage area. This qualifier cannot be
used unless the /AREA qualifier is also specified. If no pages are dumped either the specified page or range of
pages does not exist in the specified area in the backup file, or this qualifier has been used in the same
RMU/DUMP/BACKUP command as an /OPTIONS, /SKIP or /PROCESS qualifier option that has excluded
the specified page or range of pages from the dump. If this qualifier is not used with the new /START
qualifier, all page records in the specified storage area ending with the specified page number will be output.

If both the /START and /END qualifiers are specified, the starting page number must be less than or equal to
the ending page number. If the starting page number equals the ending page number only the page records for
the specified page number are dumped. The block header for each block which contains at least one of the
requested pages is dumped followed by the requested page records in that block. The START AREA record is
dumped at the start of requested page records and the END AREA record is dumped at the end of the
requested page records. By default, the database root parameters are dumped at the very start following the
dump header.

The following example shows the dump of the page records for page 10 in storage area 4 in the MFP.RBF
backup file. Since the /START and /END qualifiers both specify page 10, only the page records for that page
are dumped. At the start of the dump is the dump header, followed by the database root parameters which are
not shown to save space, followed by the block header, which begins with the "HEADER_SIZE" field, for the
block which contains the records for page 10 in storage area 4, followed by the start area record for area 4
(REC_TYPE = 6), the data page header record (REC_TYPE = 7) for page 10, the data page data record
(REC_TYPE = 8) for page 10, and ending with the end area record for area 4 (REC_TYPE = 11) which ends
the dump.

$ RMU/DUMP/BACKUP/AREA=4/START=10/END=10/OPTION=FULL MFP.RBF
*−−
* Oracle Rdb V7.2−420 11−JAN−2011 15:50:09.25
*
* Dump of Database Backup Header
* Backup filename: MFP.RBF
* Backup file database version: 7.2
*
*−−

Database Parameters:
.
.
.

HEADER_SIZE = 80 OS_ID = 1024 UTILITY_ID = 722
APPLICATION_TYPE = 1 SEQUENCE_NUMBER = 22 MAJ_VER = 1 MIN_VER = 1
VOL_NUMBER = 1 BLOCK_SIZE = 32256 CRC = 0C5D3A78 NOCRC = 00
CRC_ALTERNATE = 00 BACKUP_NAME = MFP.RBF AREA_ID = 4 HIGH_PNO = 259
LOW_PNO = 1 HDR_CHECKSUM = 9B3D

REC_SIZE = 2 REC_TYPE = 6 BADDATA = 00 ROOT = 00
AREA_ID = 4 LAREA_ID = 0 PNO = 0

REC_SIZE = 32 REC_TYPE = 7 BADDATA = 00 ROOT = 00
AREA_ID = 4 LAREA_ID = 0 PNO = 10

REC_SIZE = 28 REC_TYPE = 8 BADDATA = 00 ROOT = 00
AREA_ID = 4 LAREA_ID = 0 PNO = 10

Oracle® Rdb for OpenVMS

9.1.20 New RMU/DUMP/BACKUP /AREA, /START and /END Qualifiers 221

REC_SIZE = 512 REC_TYPE = 11 BADDATA = 00 ROOT = 00
AREA_ID = 4 LAREA_ID = 0 PNO = 0

The following example dumps the records for pages 10, 11 and 12 in the RDB$SYSTEM storage area in the
MFP.RBF backup file. Following the block header containing the target records that starts with
"HEADER_SIZE =", are the start area record for RDB$SYSTEM area 1 (REC_TYPE = 6), then the target
ABM page records for pages 10, 11, and 12 (REC_TYPE = 10), and finally the end area record for area
RDB$SYSTEM area 1 (REC_TYPE = 11) which ends the dump.

$ RMU/DUMP/BACKUP/AREA=RDB$SYSTEM/START=10/END=12/OPTION=FULL MFP.RBF
*−−
* Oracle Rdb V7.2−420 14−JAN−2011 14:40:46.88
*
* Dump of Database Backup Header
* Backup filename: MFP.RBF
* Backup file database version: 7.2
*
*−−

Database Parameters:
.
.
.

HEADER_SIZE = 80 OS_ID = 1024 UTILITY_ID = 722
APPLICATION_TYPE = 1 SEQUENCE_NUMBER = 1 MAJ_VER = 1 MIN_VER = 1
VOL_NUMBER = 1 BLOCK_SIZE = 32256 CRC = 8329C24B NOCRC = 00
CRC_ALTERNATE = 00 BACKUP_NAME = MFP.RBF AREA_ID = 1 HIGH_PNO = 178
LOW_PNO = 1 HDR_CHECKSUM = 40DE

REC_SIZE = 2 REC_TYPE = 6 BADDATA = 00 ROOT = 00 AREA_ID = 1
LAREA_ID = 0 PNO = 0

REC_SIZE = 10 REC_TYPE = 10 BADDATA = 00 ROOT = 00 AREA_ID = 1
LAREA_ID = 3 PNO = 10

REC_SIZE = 10 REC_TYPE = 10 BADDATA = 00 ROOT = 00 AREA_ID = 1
LAREA_ID = 4 PNO = 11

REC_SIZE = 10 REC_TYPE = 10 BADDATA = 00 ROOT = 00 AREA_ID = 1
LAREA_ID = 4 PNO = 12

REC_SIZE = 512 REC_TYPE = 11 BADDATA = 00 ROOT = 00 AREA_ID = 1
LAREA_ID = 0 PNO = 0

9.1.21 Reduced CPU Usage and Improved Performance

Several performance enhancements have been implemented in this release of Oracle Rdb. Most of these
changes are either specific to applications running on I64 systems or will have a greater effect on I64 systems.
These enhancements include improved code sequences for:

Integer and floating point arithmetic operations•
Floating point comparison operations•
Floating point conversion operations•

Oracle® Rdb for OpenVMS

9.1.21 Reduced CPU Usage and Improved Performance 222

9.1.22 New Logical Name to Control Sizing of LIST OF BYTE
VARYING Pointer Segments

This release of Oracle Rdb supports a new logical name,
RDMS$BIND_SEGMENTED_STRING_PSEG_SIZING, that can be used to control the upper limit for the
size of the pointer segment which is stored for LIST OF BYTE VARYING data.

In prior releases, the upper limit for a pointer segment was the free space on a page. If only a small number of
LIST segments were inserted, then the pointer segment was trimmed to that required by the data for that
column. However, when many relatively small segments were stored there would be one or more large
segments stored that required Rdb to search for free space (essentially a free storage area page). The result
was a high number of discarded pages − pages read from disk that contained free space but insufficient free
space for the stored pointer segments. The solution is to define THRESHOLD values for the MIXED format
storage area, or the LIST storage map for UNIFORM format storage areas so that Rdb has guidance on
acceptable pages.

To simplify the management of LIST OF BYTE VARYING data, Rdb now supports this new logical to
control INSERT behavior for pointer segments. The logical name
RDMS$BIND_SEGMENTED_STRING_PSEG_SIZING can be defined to one of the following numeric
values:

0
Use the current page size as the upper limit. This remains the default behavior (as in previous
releases) if this logical name is not defined.

•

1
Use the maximum segment length for the current LIST OF BYTE VARYING column value. For
instance, if the application always stored 100 octet values in the LIST then this will be used (plus
record overhead) to limit the size of the pointer segments.

•

2
Use the average segment length for the current LIST OF BYTE VARYING column value. This is a
useful setting when segments are of different sizes, such as lines from a text document.

•

Usage Notes

If any other value is used for the logical name, then it will be ignored and the setting will default to
standard behavior.

•

This logical name affects all tables including system tables.•
The effect may be more smaller pointer segments. This will translate to increased I/O counts.
However, the benefit should be better placement in the storage area and elimination (or reduction) in
discarded pages.

•

If the average or maximum length of the data segments is too small, then Rdb will ensure that the
pointer segments can store at least three pointers. When stored, the pointer segments will be trimmed
to contain only valid data pointers.

•

The stored data is compatible with all releases of Oracle Rdb, and the logical can be deassigned or
redefined at any time.

•

If the logical name RDMS$USE_OLD_SEGMENTED_STRING is defined as "T", "t", or "1" then
Rdb will revert to chained style segmented strings. In that case, the value specified by
RDMS$BIND_SEGMENTED_STRING_PSEG_SIZING will not be used.

•

Oracle® Rdb for OpenVMS

9.1.22 New Logical Name to Control Sizing of LIST OF BYTE VARYING Pointer Segments 223

9.1.23 RMU /BACKUP Performance Improvements

RMU /BACKUP performance has been improved by streamlining code sequences and reducing redundant
data copies in memory. In some cases, reductions of up to 10% of CPU time have been realized.

9.1.24 New RMU/BACKUP/ENCRYPT
"%RMU−I−ENCRYPTUSED" Message Added

The Oracle Rdb RMU/BACKUP/ENCRYPT and RMU/BACKUP/AFTER_JOURNAL/ENCRYPT
commands create encrypted Rdb database backup files and Rdb database After Image Journal backup files
using an encryption key. The same encryption key must be specified when the database is restored or
recovered by the RMU/RESTORE/ENCRYPT and RMU/RECOVER/ENCRYPT commands. The following
informational message will now always be output on a successful completion of the
RMU/BACKUP/ENCRYPT and RMU/BACKUP/AFTER_JOURNAL/ENCRYPT commands to remind the
user that the same key specified for these commands must be specified when the created backup files are
restored or recovered by the RMU/RESTORE/ENCRYPT and "RMU/RECOVER/ENCRYPT commands.

%RMU−W−ENCRYPTUSED, Encryption key required when future restore
performed.

The following example shows this new informational message being put out when successful
RMU/BACKUP/ENCRYPT and RMU/BACKUP/AFTER_JOURNAL/ENCRYPT commands are completed.

$ RMU/BACKUP/NOLOG database_file backup_file −
 /ENCRYPT=(VALUE=key_name,ALGORITHM=algorithm_name)
%RMU−I−ENCRYPTUSED, Encryption key required when future restore
performed.
$ RMU/BACKUP/AFTER_JOURNAL/FORMAT=NEW_TAPE −
 database_file backup_file −
 /ENCRYPT=(VALUE=key_name,ALGORITHM=algorithm_name)/NOLOG
%RMU−I−ENCRYPTUSED, Encryption key required when future restore
performed.

9.1.25 New DATABASE_HANDLE Option for the GET
DIAGNOSTICS Statement

This release of Oracle Rdb adds the keyword DATABASE_HANDLE for use by the GET DIAGNOSTICS
statement. This option returns a unique handle (or stream) identifier which can be useful in distinguishing one
attach from another.

SQL> set flags 'trace';
SQL>
SQL> begin
cont> declare :ii integer;
cont> get diagnostics :ii = DATABASE_HANDLE;
cont> trace :ii;
cont> end;
~Xt: 1
SQL>

Oracle® Rdb for OpenVMS

9.1.23 RMU /BACKUP Performance Improvements 224

9.1.26 New SYS_GET_DIAGNOSTIC Function Supported for
SQL

This release of Oracle Rdb adds a new function, SYS_GET_DIAGNOSTIC, that can be used to return the
same session information available to the GET DIAGNOSTICS statement. This function provides a shorthand
method of fetching values without requiring a compound statement or an intermediate variable.

Syntax

SYS_GET_DIAGNOSTIC (statement−item−name)

Oracle® Rdb for OpenVMS

9.1.26 New SYS_GET_DIAGNOSTIC Function Supported for SQL 225

Usage Notes

For the list of keywords acceptable by this function, please see the statement−item−name syntax
under the GET DIAGNOSTICS statement.

•

Each keyword used with SYS_GET_DIAGNOSTIC will cause the result to have a different
associated data type. Please refer to the GET DIAGNOSTICS statement for the returned data types.

•

Examples

The following example shows the return of session information.

SQL> select SYS_GET_DIAGNOSTIC (CONNECTION_NAME) as CONN,
cont> SYS_GET_DIAGNOSTIC (SERVER_IDENTIFICATION) as IDENT,
cont> SYS_GET_DIAGNOSTIC (DATABASE_HANDLE) as DBHANDLE
cont> from GET_DIAG;
 CONN IDENT DBHANDLE
 RDB$DEFAULT_CONNECTION Oracle Rdb V7.2−501 1
1 row selected
SQL>

9.1.27 Improved Error Handling for Database Disk Backup
File Sets

Oracle® Rdb for OpenVMS

9.1.27 Improved Error Handling for Database Disk Backup File Sets 226

Bug 4596098

The "/DISK_FILE" command qualifier can be used with certain Oracle Rdb RMU commands such as
"RMU/BACKUP" and "RMU/RESTORE" to create or read database disk backup file sets. The error handling
for the "/DISK_FILE" qualifier used with the "RMU/RESTORE" and "RMU/DUMP/BACKUP" commands
has been improved in the following cases.

If the first file of a backup file set is not specified, the "RMU/RESTORE" or "RMU/DUMP/BACKUP"
command cannot continue since the first file of the backup file set contains the backed up root. For this case, a
new message has been added which displays the backup command that was used to create the backup file set
which is contained in the summary record at the start of each backup file. The backup command will show all
the backup files created by the backup in the correct order.

%RMU−W−BCKCMDUSED, The backup command was
"RMU/BACKUP...".

In addition, a new message has been added to specify that file number "n" in the backup file set, the first
backup set file specified in the restore command, is not the first backup file of the backup set created by the
backup command.

%RMU−E−NOTFIRVOL, Backup set file number n, the first backup file specified,
is not the first file of the backup set. Specify all the backup set files or
devices in the correct order.

The following example shows the new error messages for this case. The first backup set file created by the
"RMU/BACKUP/DISK_FILE" command, "MFP", is not specified by the "RMU/RESTORE" command.

$ RMU/RESTORE/NOLOG/NOCDD/DISK=READER=3 MFP01,MFP02,MFP03
%RMU−W−BCKCMDUSED, The backup command was
"RMU/BACKUP/NOLOG/DISK=WRITER=4 MF_PERSONNEL MFP,MFP01,MFP02,MFP03".
%RMU−E−NOTFIRVOL, Backup set file number 2, the first backup file specified,
is not the first file of the backup set. Specify all the backup set files or
devices in the correct order.
%RMU−F−INVDBBFIL, invalid backup file DEVICE:[DIRECTORY]MFP01.RBF;
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 22−MAR−2011 10:04:26.82

If the first file of the backup file set is specified but other file(s) of the set are left out, a new message has been
added which displays the backup command that was used to create the backup file set which is contained in
the summary record at the start of each backup file. This will show all the backup files created by the backup
command in the correct order.

%RMU−W−BCKCMDUSED, The backup command was
"RMU/BACKUP...".

Also, the warning message below has been changed to the following error message.

%RMU−W−RESINCOMP, Not all storage areas have been restored

%RMU−E−RESINCOMP, Not all storage areas have been restored, the
 database may be corrupt.

In this case, "%RMU−E−RESINCOMP" has been made the exit status. The restored database can be attached
to and the storage areas that were restored can be accessed in SQL without error, though SQL will return an

Oracle® Rdb for OpenVMS

9.1.27 Improved Error Handling for Database Disk Backup File Sets 227

error if access is attempted to the storage areas in the root that were not restored. The user should delete the
restored files and repeat the restore using all the backup files in the backup set displayed in the
"%RMU−W−BCKCMDUSED" message. If any of the backup files in the set have been lost, the missing
storage areas can be restored by the RMU/RESTORE/AREA command using a previous backup file if it is
available.

The new error messages for this case are not put out for the "RMU/DUMP/BACKUP" command since this
command can be used to dump one or more files of a backup set without error as long as the first backup set
file containing the root information is included as the first file or only file specified. If the
"/OPTION=DEBUG" qualifier is used with the "RMU/DUMP/BACKUP" command, the backup command
will be displayed along with the other summary record fields at the start of each backup set file.

The following example shows the new error messages for this case. The second backup set file created by the
"RMU/BACKUP/DISK_FILE" command, "MFP01", is not specified by the "RMU/RESTORE" command.

$ RMU/RESTORE/NOLOG/NOCDD/DISK=READER=3 MFP,MFP02,MFP03
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
%RMU−W−USERECCOM, Use the RMU Recover command. The journals are not available.
%RMU−W−BCKCMDUSED, The backup command was
"RMU/BACKUP/NOLOG/DISK=WRITER=4 MF_PERSONNEL MFP,MFP01,MFP02,MFP03".
%RMU−E−RESINCOMP, Not all storage areas have been restored, the database may be
corrupt.

If, for the command "RMU/RESTORE/DISK_FILE/READER_THREADS=number", the number of reader
threads specified was greater than the number of backup files specified, the following fatal message was put
out and the restore was terminated. This message made sense only for tape backups where you can specify the
"/VOLUMES" and "/MASTER" qualifiers.

%RMU−F−CONFLSWIT, conflicting qualifiers /VOLUMES and /MASTER

The %RMU−F−CONFLSWIT message has been replaced by the more general fatal error message below.

%RMU−F−EXTRAREADERS, "n", the number of reader threads, exceeds "n",
 the number of output files or master tape devices.

This message will not be displayed for the "RMU/DUMP/BACKUP" command which does not allow the
number of reader threads to be specified.

The following example shows this last case. Five reader threads are specified for the
"RMU/RESTORE/DISK_FILE" command but there are only four backup files in the backup file set so the
first restore command fails. If four or fewer reader threads are specified, the command will succeed.

$ RMU/RESTORE/NOLOG/NOCDD/DISK=READER=5 MFP,MFP01,MFP02,MFP03
%RMU−F−EXTRAREADERS, "5", the number of reader threads, exceeds "4", the number
of output files or master tape devices.
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 22−MAR−2011 10:17:08.23
$ RMU/RESTORE/NOLOG/NOCDD/DISK=READER=4 MFP,MFP01,MFP02,MFP03
%RMU−I−AIJRSTAVL, 0 after−image journals available for use
%RMU−I−AIJISOFF, after−image journaling has been disabled
%RMU−W−USERECCOM, Use the RMU Recover command. The journals are not available.
$ RMU/VERIFY/ALL MF_PERSONNEL

Oracle® Rdb for OpenVMS

9.1.27 Improved Error Handling for Database Disk Backup File Sets 228

Chapter 10
Documentation Corrections, Additions and
Changes
This chapter provides corrections for documentation errors and omissions.

Chapter 10Documentation Corrections, Additions and Changes 229

10.1 Documentation Corrections

10.1.1 Oracle Rdb Release 7.2.x.x New Features Document
Added

A new document has been created which contains all of the New Features Chapters from all previous Rdb 7.2
Release Notes. This document will be included in saveset A of the Rdb kit. It is called
RDB_NEWFEATURES_72xx and will be available in postscript, text and PDF format. This will provide
customers with one document to reference to find out about all new features that have been added to the Rdb
7.2 releases.

10.1.2 RMU Replicate On−Line Help Reports Incorrect
Maximum Checkpoint Value for Configure Qualifier

Bug 16546622

The on−line Help for the RMU/Replicate After_Journal Configure command qualifier Checkpoint shows an
incorrect maximum value for the checkpoint−interval. It shows the following:

Maximum Value: 1024 messages

The actual maximum value accepted for the checkpoint−interval is 50000.

This has been corrected in the on−line Help in Oracle Rdb Release 7.2.5.3.

10.1.3 Missing or Incorrect Documentation for SET
AUTOMATIC TRANSLATION Command

Bug 14354801

The following errors or omissions occur in the SQL Reference Manual, Volume 4, for the SET AUTOMATIC
TRANSLATION statement.

The syntax diagram does not indicate that the runtime−options is optional.•
If the runtime−options is omitted, the default behavior is to assume 'ON' as the parameter and enable
automatic translation.

•

The syntax diagram does not document the Interactive SQL statements; SET NOAUTOMATIC
TRANSLATION, or the alternate SET NO AUTOMATIC TRANSLATION statement.

•

The arguments section asserts that DEFAULT is a legal keyword, or value for the parameter. This is
incorrect; only ON or OFF are legal for the runtime−options.

•

The following usage notes should be present.
The SET NOAUTOMATIC TRANSLATION and SET NO AUTOMATIC TRANSLATION
statements may only be used in Interactive SQL. They are equivalent to SET AUTOMATIC
TRANSLATION OFF.

♦

If AUTOMATIC TRANSLATION is enabled, then translation is attempted between different
versions of the table rows. For instance, after an ALTER TABLE command, where a new

♦

•

10.1 Documentation Corrections 230

character set is specified for existing data. This is demonstrated in the following example.

SQL> create table SAMPLE (description char(20));
SQL> insert into SAMPLE (description) values ('Sample text');
1 row inserted
SQL> select description from SAMPLE;
 DESCRIPTION
 Sample text
1 row selected
SQL> alter table SAMPLE modify (description char(20) character set utf8);
SQL> select description from SAMPLE;
%RDB−E−CONVERT_ERROR, invalid or unsupported data conversion
−RDMS−E−CSETBADASSIGN, incompatible character sets prohibit the requested
assignment
SQL> set automatic translation;
SQL> select description from SAMPLE;
 DESCRIPTION
 Sample text
1 row selected
SQL>

Note that once the restructuring from an old version is created in the current session, it is not
undone by disabling AUTOMATIC TRANSLATION.

The following examples show the usage of this statement.

Example 1: Using SET AUTOMATIC TRANSLATION command from a SQL Module Language procedure

procedure SET_AUTO_TRANS (sqlcode);
 SET AUTOMATIC TRANSLATION ON;

Or if a parameter is passed:

procedure SET_AUTO_TRANS
 (sqlcode,
 :on_off char(3)
);
 SET AUTOMATIC TRANSLATION :on_off;

Example 2: Using SET AUTOMATIC TRANSLATION at runtime

SQL> declare :auto_trans char(10);
SQL> accept :auto_trans;
Enter value for AUTO_TRANS: off
SQL> set automatic translation :auto_trans;
SQL> show automatic translation;
Automatic translation: OFF
SQL>

10.1.4 Required Privileges for AUTHORIZATION Clause of
CREATE MODULE

The following usage note is missing from the SQL Reference Manual, under the CREATE MODULE

Oracle® Rdb for OpenVMS

10.1.4 Required Privileges for AUTHORIZATION Clause of CREATE MODULE 231

Statement.

When the AUTHORIZATION clause is used, the definer of the module is granting their own
privileges to the specified username so that tables, columns, sequences, procedures and functions are
accessed as though accessed by the definer.
The AUTHORIZATION is expected to be the session user, or an OpenVMS rights identifier granted
to that user (when SECURITY CHECKING IS EXTERNAL). If the session is run with one of the
following OpenVMS privileges, then any user or rights identifier can be referenced: SYSPRV,
BYPASS or IMPERSONATE.

•

Note

The OpenVMS IMPERSONATE privilege can be used to override the checking for Oracle
Rdb Release 7.2.5.1 and later versions.

10.1.5 ROUND and TRUNC Are Built In Functions for SQL

The functions ROUND and TRUNC for numeric values are now supported as native functions in Oracle Rdb.

Fixed point values are now truncated and rounded correctly. Floating values, while supported by ROUND and
TRUNC, may not always return the expected results. Please review usage of ROUND in such contexts.

The result type for ROUND and TRUNC will match the data type of the input source parameter.

Usage Notes

The implementation of ROUND and TRUNC for DATE values requires the use of the OCI Services
for Rdb library (also know as SQL*net for Rdb). These functions will now accept DATE ANSI,
TIMESTAMP and DATE VMS values.
Attempts to use ROUND or TRUNC on a database that is not setup for OCI Services will receive
errors similar to these:

SQL> select TRUNC (current_date) from rdb$database;
%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−BAD_SYM, unknown routine symbol − TRUN2
SQL> select ROUND (current_date) from rdb$database;
%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−BAD_SYM, unknown routine symbol − ROUN2

Note

The special functions ROUN2 and TRUN2 are internal routines to deal with DATE
types.

•

Both ROUND and TRUNC support the data types REAL, FLOAT and DOUBLE PRECISION for
both parameter and results. However, due to the imprecise nature of floating point arithmetic, this
may cause unexpected results. A value such as 4.185 will not round to 4.19 as expected because the
internal (and approximate) representation of the number is something like 4.184999942780E+000 and
therefore does not appear to require rounding to the second decimal place according to the rounding
rules.

•

Oracle® Rdb for OpenVMS

10.1.5 ROUND and TRUNC Are Built In Functions for SQL 232

The following example shows this problem.

SQL> select cast(round (4.185,2) as integer(2)) from rdb$database;

 4.18
1 row selected
SQL> select cast(round (4.175,2) as integer(2)) from rdb$database;

 4.18
1 row selected
SQL>

Note

The result of a divide operation (/) or the AVG, STDDEV, VARIANCE statistical
functions are floating point values so applying TRUNC or ROUND to those results,
even if performed on integer sources, will also be affected by the intermediate
floating point type.

If you use SQL to access older versions of Rdb (such as via remote access) then SQL will revert to the
previous behavior and use the SQL functions provided by the SQL_FUNCTIONS library.

•

10.1.6 Missing Documentation for CREATE OUTLINE
Statement

Bug 9864420

Prior releases of the Oracle Rdb documentation omitted a description of query outlines pertaining to views.

When Rdb compiles a query that references a view, it will implicitly use the view name to locate a matching
query outline. This allows the database administrator to create partial query outlines that tune just that part of
the query involving the view.

However, if the query outline is named with the same name as a view but does not follow the structure of the
view then a RDMS−F−LEVEL_MISMATCH error will be reported.

The following example shows this problem.

SQL> create outline CURRENT_JOB
cont> from (select * from CURRENT_JOB limit to 1 rows);
SQL>
SQL> show outline CURRENT_JOB;
 CURRENT_JOB
 Source:

−− Rdb Generated Outline : 2−SEP−2010 10:24
create outline CURRENT_JOB
id 'E9968EFAF723ED23DF59216A5DDE4C7D'
mode 0
as (
 query (
−− For loop
 subquery (

Oracle® Rdb for OpenVMS

10.1.6 Missing Documentation for CREATE OUTLINE Statement 233

 subquery (
 EMPLOYEES 1 access path index EMP_EMPLOYEE_ID
 join by match to
 JOB_HISTORY 0 access path index JH_EMPLOYEE_ID
)
)
)
)
compliance optional ;
SQL>
SQL> set flags 'strategy,detail(2)';
SQL>
SQL> select * from CURRENT_JOB limit to 1 rows;
~S: Outline "CURRENT_JOB" used
%RDMS−F−LEVEL_MISMATCH, the table/subquery nesting levels
in the query outline do not match the query
SQL>

To resolve this problem, the database administrator must change the name of the outline so that it is not
assumed to describe the view record selection definition.

SQL> create outline CURRENT_JOB_REF
cont> from (select * from CURRENT_JOB limit to 1 rows);
SQL>
SQL> set flags 'strategy,detail(2)';
SQL>
SQL> select * from CURRENT_JOB limit to 1 rows;
~S: Outline "CURRENT_JOB_REF" used
...
 LAST_NAME FIRST_NAME EMPLOYEE_ID JOB_CODE DEPARTMENT_CODE
SUPERVISOR_ID JOB_START
 Toliver Alvin 00164 DMGR MBMN
00228 21−Sep−1981
1 row selected
SQL>
SQL> select * from CURRENT_JOB where employee_id = '00164'
cont> optimize using CURRENT_JOB_REF;
~S: Outline "CURRENT_JOB_REF" used
...
 LAST_NAME FIRST_NAME EMPLOYEE_ID JOB_CODE DEPARTMENT_CODE
SUPERVISOR_ID JOB_START
 Toliver Alvin 00164 DMGR MBMN
00228 21−Sep−1981
1 row selected
SQL>

Alternatively, create the query outline on the view itself to allow it to be used more widely.

SQL> create outline CURRENT_JOB
cont> on view CURRENT_JOB;
SQL>
SQL> show outline CURRENT_JOB;
 CURRENT_JOB
 Source:

−− Rdb Generated Outline : 2−SEP−2010 10:52
create outline CURRENT_JOB
−− On view CURRENT_JOB
id '9C6D98DAAF09A3E1796F7D345399028B'
mode 0
as (

Oracle® Rdb for OpenVMS

10.1.6 Missing Documentation for CREATE OUTLINE Statement 234

 query (
−− View
 subquery (
 EMPLOYEES 1 access path index EMP_EMPLOYEE_ID
 join by match to
 JOB_HISTORY 0 access path index JH_EMPLOYEE_ID
)
)
)
compliance optional ;
SQL>
SQL> set flags 'strategy,detail(2)';
SQL>
SQL> select * from CURRENT_JOB limit to 1 rows;
~S: Outline "CURRENT_JOB" used
...
SQL>

10.1.7 Sorting Capabilities in Oracle Rdb

Oracle Rdb supports both the traditional OpenVMS SORT32 facility as well as a simplified internal sort
facility called QSORT.

QSORT

Use of QSORT preempts use of all other sorting algorithms. The QSORT algorithm is used if sorting is being
done on a single key and if only a small amount of data is involved. The reason for this is that the other
sorting algorithms, while using more efficient methods, have a certain amount of overhead associated with
setting them up and with being general purpose routines.

QSORT is used by default if:

There is a single sort key.•
The number of rows to be sorted is 5000 or fewer.•
The sort key is not floating point (REAL, FLOAT, or DOUBLE PRECISION).•

How to Alter QSORT Usage

To change the usage of QSORT to evaluate behavior with other parameters, define a new row limit as
follows:

$ DEFINE RDMS$BIND_MAX_QSORT_COUNT m

The default value is 5000 rows.

Note

Defining the logical RDMS$BIND_MAX_QSORT_COUNT as 63 will return QSORT
behavior to that used by prior releases of Oracle Rdb V7.2.

To disable QSORT because of either anomalous or undesirable performance, the user can define the following
logical to the value zero, in which case the VMS SORT interface is always used.

Oracle® Rdb for OpenVMS

10.1.7 Sorting Capabilities in Oracle Rdb 235

$ DEFINE RDMS$BIND_MAX_QSORT_COUNT 0

10.1.8 RMU /SET ROW_CACHE Command Updates

The documentation and online help for the "RMU /SET ROW_CACHE" command inadvertantly did not
include the full set of allowed keywords and qualifiers.

The valid command line qualifiers for the "RMU /SET ROW_CACHE" command are:

Alter − Specifies the action to take on the named cache. You must specify the cache name and at least
one other option.

•

Disable − Disables row caching. Do not use with the Enable qualifier.•
Enable − Enables row caching. Do not use with the Disable qualifier.•
Log − Specifies whether the processing of the command is reported to SYS$OUTPUT. Specify the
Log qualifier to request log output and the Nolog qualifier to prevent it. If you specify neither, the
default is the current setting of the DCL verify switch.

•

Backing_Store_Location=devdir − Specify the per−database default backing store location.•
NoBacking_Store_Location − Remove the per−database default backing store location and revert
back to the default backing store file location of the root file device and directory.

•

The valid values for the ALTER qualifier are:

NAME=cachename − Name of the cache to be modified. The cache must already be defined in the
database. This is a required parameter. This parameter accepts the wildcard characters asterisk (*) and
percent sign (%).

•

ENABLE − Enable the cache.•
DISABLE − Disable the cache.•
DROP − Drop (delete) the cache.•
SNAPSHOT_SLOT_COUNT=n − Specify the number of snaphot slots in the cache. A value of zero
disables the snapshot portion for the specified cache.

•

SLOT_COUNT=n − Specify the number of slots in the cache.•
SLOT_SIZE=n − Specify the size (in bytes) of each slot in the cache.•
WORKING_SET_COUNT=n − Specify the number of working set entries for the cache. Valid values
are from 1 to 100.

•

BACKING_STORE_LOCATION=devdir − Specify the per−cache default backing store location.•
NOBACKING_STORE_LOCATION − Remove the per−cache default backing store location and
revert back to the database default backing store file location.

•

SHARED_MEMORY − Specify the shared memory type and parameters for the cache. Valid
keywords are:

TYPE=PROCESS to specify traditional shared memory global section, which means that the
database global section is located in process (P0) address space and may be paged from the
processes working set as needed.

♦

TYPE=RESIDENT to specify that the database global section is memory resident in process
(P0) address space using OpenVMS Alpha shared page tables, which means that a system
space global section is fully resident, or pinned, in memory.

♦

RAD_HINT= "number" to indicate a request that memory for this shared memory should be
allocated from the specified OpenVMS Alpha Resource Affinity Domain (RAD). This
parameter specifies a hint to Oracle Rdb and OpenVMS about where memory should be
physically allocated. It is possible that if the memory is not available, it will be allocated from

♦

•

Oracle® Rdb for OpenVMS

10.1.8 RMU /SET ROW_CACHE Command Updates 236

other RADs in the system. For systems that do not support RADs, no RAD_HINT
specification is valid.
The RAD_HINT qualifier is only valid when the shared memory type is set to RESIDENT.
Setting the shared memory type to SYSTEM or PROCESS explicitly disables any previously
defined RAD hint.

Note

OpenVMS support for RADs is available only on the AlphaServer GS series
systems. For more information about using RADs, refer to the OpenVMS
Alpha Partitioning and Galaxy Guide.

NORAD_HINT disables the RAD hint.♦

The "/ALTER=(...)" qualifier may be specified multiple times on the command line. Each /ALTER qualifier
specified operates on one unique cache if no wildcard character (% or *) is specified. Otherwise, Each
/ALTER operates on all matching cache names.

For example, the following command alters two caches:

$ RMU /SET ROW_CACHE MF_PERSONNEL −
 /ALTER= (NAME = RDB$SYS_CACHE,
 SLOT_COUNT = 800) −
 /ALTER= (NAME = RESUMES, −
 SLOT_SIZE=500, −
 WORKING_SET_COUNT = 15)

The following command alters caches named FOOD and FOOT (and any other cache with a 4 character name
with the first three characters of "FOO" defined in the database):

$ RMU /SET ROW_CACHE MF_PERSONNEL −
 /ALTER= (NAME = FOO%,
 BACKING_STORE_LOCATION=DISK$RDC:[RDC])

10.1.9 Documentation for the DEBUG_OPTIONS Qualifier of
RMU Unload

Bug 8447357

The RMU Help file and RMU Reference Manual is missing the description of the following qualifier for
RMU Unload.

The DEBUG_OPTIONS qualifier accepts a list of keyword options.

[NO]TRACE
Traces the qualifier and parameter processing performed by RMU Unload. In addition, the query
executed to read the table data is annotated with the TRACE statement at each Commit (controlled by
Commit_Every qualifier). When the logical name RDMS$SET_FLAGS is defined as "TRACE", then
a line similar to the following is output after each commit is performed.

•

Oracle® Rdb for OpenVMS

10.1.9 Documentation for the DEBUG_OPTIONS Qualifier of RMU Unload 237

~Xt: 2009−04−23 15:16:16.95: Commit executed.

The default is NOTRACE.

$ RMU/UNLOAD/REC=(FILE=WS,FORMAT=CONTROL) SQL$DATABASE WORK_STATUS WS/DEBUG=
TRACE
Debug = TRACE
* Synonyms are not enabled
Row_Count = 500
Message buffer: Len: 13524
Message buffer: Sze: 27, Cnt: 500, Use: 4 Flg: 00000000
%RMU−I−DATRECUNL, 3 data records unloaded.

[NO]FILENAME_ONLY
When the qualifier Record_Definition=Format:CONTROL is used, the name of the created unload
file is written to the control file (.CTL). When the keyword FILENAME_ONLY is specified, RMU
Unload will prune the output file specification to show only the file name and type. The default is
NOFILENAME_ONLY.

$ RMU/UNLOAD/REC=(FILE=TT:,FORMAT=CONTROL) SQL$DATABASE WORK_STATUS WS/DEBUG=
FILENAME
−−
−− SQL*Loader Control File
−− Generated by: RMU/UNLOAD
−− Version: Oracle Rdb X7.2−00
−− On: 23−APR−2009 11:12:46.29
−−
LOAD DATA
INFILE 'WS.UNL'
APPEND
INTO TABLE "WORK_STATUS"
(
 STATUS_CODE POSITION(1:1) CHAR NULLIF (RDB$UL_NB1 = '1')
,STATUS_NAME POSITION(2:9) CHAR NULLIF (RDB$UL_NB2 = '1')
,STATUS_TYPE POSITION(10:23) CHAR NULLIF (RDB$UL_NB3 = '1')
−− NULL indicators
,RDB$UL_NB1 FILLER POSITION(24:24) CHAR −− indicator for STATUS_CODE
,RDB$UL_NB2 FILLER POSITION(25:25) CHAR −− indicator for STATUS_NAME
,RDB$UL_NB3 FILLER POSITION(26:26) CHAR −− indicator for STATUS_TYPE
)
%RMU−I−DATRECUNL, 3 data records unloaded.

•

[NO]HEADER
This keyword controls the output of the header in the control file. To suppress the header, use
NOHEADER. The default is HEADER.

•

APPEND, INSERT, REPLACE, TRUNCATE
These keywords control the text that is output prior to the INTO TABLE clause in the control file.
The default is APPEND and only one of these options can be specified.

•

10.1.10 SQL$MSGxx.DOC Is Not Alphabetical

Bug 4387383

The last paragraph of page A−3 of volume 5 of the SQL Reference Manual says the message codes in files
such as SQL$MSG71.DOC are alphabetized. However, it was found that the message codes were not
alphabetized in SQL$MSG71.DOC or SQL$MSG72.DOC.

Oracle® Rdb for OpenVMS

10.1.10 SQL$MSGxx.DOC Is Not Alphabetical 238

The cause of this problem was that the COSI message codes were appended to the end of the SQL message
codes in this file.

This has been corrected in Oracle Rdb Release 7.2.4. We no longer append the COSI message codes to the
SQL$MSGnn.DOC file since the COSI message codes are available separately.

10.1.11 LOCK_TIMEOUT Documentation Error in RMU
Reference Manual Release 7.2

The "Oracle Rdb for OpenVMS: Oracle RMU Reference Manual Release 7.2" incorrectly implies that there is
a default value for the lock timeout in seconds specified by the /LOCK_TIMEOUT qualifier in the following
sections:

1.10 RMU/BACKUP COMMAND•
1.11 RMU/BACKUP/AFTER_JOURNAL COMMAND•
1.17 RMU COPY_DATABASE COMMAND•

In all these sections, in the description of the "/Lock_Timeout=n" qualifier, any reference to a default value
such as "The default value for the /Lock_Timeout=n qualifier is ..." needs to be removed since there is no
default value allowed for this qualifier. If you specify the /LOCK_TIMEOUT qualifier, you have to specify
the lock timeout value in seconds. If you do not specify the /LOCK_TIMEOUT qualifier, the default is to wait
indefinitely to acquire the QUIET POINT lock and any other locks needed for ONLINE execution of the
command. It should also be mentioned that the LOCK_TIMEOUT value does not only affect the QUIET
POINT lock but can affect other locks RMU may need to acquire for ONLINE execution.

10.1.12 Revised Example for SET OPTIMIZATION LEVEL
Statement

Bug 6350960

Example 1: Setting the optimization level

The dynamic optimizer can use either FAST FIRST or TOTAL TIME tactics to return rows to the application.
The default setting, FAST FIRST, assumes that applications, especially those using interactive SQL, will want
to see rows as quickly as possible and possibly abort the query before completion. Therefore, if the FAST
FIRST tactic is possible, the optimizer will sacrifice overall retrieval time to initially return rows quickly. This
choice can be affected by setting the OPTIMIZATION LEVEL.

The following example contrasts the query strategies selected when FAST FIRST versus TOTAL TIME is in
effect. Databases and queries will vary in their requirements. Queries should be tuned to see which setting
best suits the needs of the application environment. For the MF_PERSONNEL database, there is little or no
difference between these tactics but for larger tables the differences could be noticeable.

SQL> set flags 'STRATEGY,DETAIL';
SQL> −−
SQL> −− No optimization level has been selected. The optimizer
SQL> −− selects the FAST FIRST (FFirst) retrieval tactic to
SQL> −− retrieve the rows from the EMPLOYEES table in the
SQL> −− following query:
SQL> −−

Oracle® Rdb for OpenVMS

10.1.11 LOCK_TIMEOUT Documentation Error in RMU Reference Manual Release 7.2 239

SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN ('00167', '00168');
Tables:
 0 = EMPLOYEES
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: (0.EMPLOYEE_ID = '00167') OR (0.EMPLOYEE_ID = '00168')
 BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
 Keys: r0: 0.EMPLOYEE_ID = '00168'
 r1: 0.EMPLOYEE_ID = '00167'
 EMPLOYEE_ID LAST_NAME
 00167 Kilpatrick
 00168 Nash
2 rows selected
SQL> −−
SQL> −− Use the SET OPTIMIZATION LEVEL statement to specify that
SQL> −− you want the TOTAL TIME (BgrOnly) retrieval strategy to
SQL> −− be used.
SQL> −−
SQL> SET OPTIMIZATION LEVEL 'TOTAL TIME';
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN ('00167', '00168');
Tables:
 0 = EMPLOYEES
Leaf#01 BgrOnly 0:EMPLOYEES Card=100
 Bool: (0.EMPLOYEE_ID = '00167') OR (0.EMPLOYEE_ID = '00168')
 BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
 Keys: r0: 0.EMPLOYEE_ID = '00168'
 r1: 0.EMPLOYEE_ID = '00167'
 EMPLOYEE_ID LAST_NAME
 00167 Kilpatrick
 00168 Nash
2 rows selected
SQL> −−
SQL> −− When the SET OPTIMIZATION LEVEL 'DEFAULT' statement
SQL> −− is specified the session will revert to the default FAST FIRST
SQL> −− optimizer tactic.
SQL> −−
SQL> SET OPTIMIZATION LEVEL 'DEFAULT';
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN ('00167', '00168');
Tables:
 0 = EMPLOYEES
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: (0.EMPLOYEE_ID = '00167') OR (0.EMPLOYEE_ID = '00168')
 BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
 Keys: r0: 0.EMPLOYEE_ID = '00168'
 r1: 0.EMPLOYEE_ID = '00167'
 EMPLOYEE_ID LAST_NAME
 00167 Kilpatrick
 00168 Nash
2 rows selected
SQL>

10.1.13 RMU /VERIFY Process Quotas and Limits
Clarification

Oracle® Rdb for OpenVMS

10.1.13 RMU /VERIFY Process Quotas and Limits Clarification 240

When using the RMU/VERIFY command, a process requires a minimum of the following quotas:

FILLM and CHANNELCNT at least 25 more than the total number of database storage areas,
snapshot storage areas, and after image journals.

•

Large enough BYTLM, page file quota and working set to open all of the database storage areas,
snapshot storage areas, and after image journals.

•

10.1.14 Online Backup Can Be Performed With Transfer Via
Memory

The following incorrect Oracle RMU BACKUP command restriction will be removed from the Oracle RMU
Reference Manual.

In prior releases of the Oracle RMU Reference Manual, it states under the RMU Backup Online option that
"However, an online backup operation cannot be performed if TRANSFER VIA MEMORY, also referred to
as optimized page transfer, is enabled. (See the description of the SQL ALTER DATABASE statement in the
Oracle Rdb SQL Reference Manual for information on optimized page transfer.)". This restriction is no longer
true and will be removed from the Oracle RMU Reference Manual.

The same restriction is also listed for the Online Copy Database and for the Online Move Area commands.
This restriction is no longer in place for these commands so it will be removed from the Oracle RMU
Reference Manual.

10.1.15 Missing Example for CREATE STORAGE MAP

Bug 5655348

The SQL Reference Manual did not include an example showing the storage area attributes for a LIST storage
map. The following example will appear in a future version of the Oracle Rdb V7.2 SQL Reference Manual in
the CREATE STORAGE MAP section.

Example

The following example shows the use of storage area attributes in a LIST storage map. The storage area
attributes must be immediately following the storage area name (as in table storage maps).

SQL> create database
cont> filename 'DB$:MULTIMEDIA'
cont>
cont> create storage area PHOTO_AREA1
cont> filename 'DB$:PHOTO_AREA1'
cont> page format UNIFORM
cont>
cont> create storage area PHOTO_AREA2
cont> filename 'DB$:PHOTO_AREA2'
cont> page format UNIFORM
cont>
cont> create storage area TEXT_AREA
cont> filename 'DB$:TEXT_AREA'
cont> page format UNIFORM
cont>

Oracle® Rdb for OpenVMS

10.1.14 Online Backup Can Be Performed With Transfer Via Memory 241

cont> create storage area AUDIO_AREA
cont> filename 'DB$:AUDIO_AREA'
cont> page format UNIFORM
cont>
cont> create storage area DATA_AREA
cont> filename 'DB$:DATA_AREA'
cont> page format UNIFORM
cont> ;
SQL>
SQL> create table EMPLOYEES
cont> (name char(30),
cont> dob date,
cont> ident integer,
cont> photograph list of byte varying (4096) as binary,
cont> resume list of byte varying (132) as text,
cont> review list of byte varying (80) as text,
cont> voiceprint list of byte varying (4096) as binary
cont>);
SQL>
SQL> create storage map EMPLOYEES_MAP
cont> for EMPLOYEES
cont> enable compression
cont> store in DATA_AREA;f
SQL>
SQL> create storage map LISTS_MAP
cont> store lists
cont> in AUDIO_AREA
cont> (thresholds are (89, 99, 100)
cont> ,comment is 'The voice clips'
cont> ,partition AUDIO_STUFF)
cont> for (employees.voiceprint)
cont> in TEXT_AREA
cont> (thresholds is (99)
cont> ,partition TEXT_DOCUMENTS)
cont> for (employees.resume, employees.review)
cont> in (PHOTO_AREA1
cont> (comment is 'Happy Smiling Faces?'
cont> ,threshold is (99)
cont> ,partition PHOTOGRAPHIC_IMAGES_1)
cont> ,PHOTO_AREA2
cont> (comment is 'Happy Smiling Faces?'
cont> ,threshold is (99)
cont> ,partition PHOTOGRAPHIC_IMAGES_2)
cont>)
cont> for (employees.photograph)
cont> fill randomly
cont> in RDB$SYSTEM
cont> (partition SYSTEM_LARGE_OBJECTS);
SQL>
SQL> show storage map LISTS_MAP;
 LISTS_MAP
 For Lists
 Store clause: STORE lists
 in AUDIO_AREA
 (thresholds are (89, 99, 100)
 ,comment is 'The voice clips'
 ,partition AUDIO_STUFF)
 for (employees.voiceprint)
 in TEXT_AREA
 (thresholds is (99)
 ,partition TEXT_DOCUMENTS)
 for (employees.resume, employees.review)

Oracle® Rdb for OpenVMS

10.1.14 Online Backup Can Be Performed With Transfer Via Memory 242

 in (PHOTO_AREA1
 (comment is 'Happy Smiling Faces?'
 ,threshold is (99)
 ,partition PHOTOGRAPHIC_IMAGES_1)
 ,PHOTO_AREA2
 (comment is 'Happy Smiling Faces?'
 ,threshold is (99)
 ,partition PHOTOGRAPHIC_IMAGES_2)
)
 for (employees.photograph)
 fill randomly
 in RDB$SYSTEM
 (partition SYSTEM_LARGE_OBJECTS)

 Partition information for lists map:
 Vertical Partition: VRP_P000
 Partition: (1) AUDIO_STUFF
 Fill Randomly
 Storage Area: AUDIO_AREA
 Thresholds are (89, 99, 100)
 Comment: The voice clips
 Partition: (2) TEXT_DOCUMENTS
 Fill Randomly
 Storage Area: TEXT_AREA
 Thresholds are (99, 100, 100)
 Partition: (3) PHOTOGRAPHIC_IMAGES_1
 Fill Randomly
 Storage Area: PHOTO_AREA1
 Thresholds are (99, 100, 100)
 Comment: Happy Smiling Faces?
 Partition: (3) PHOTOGRAPHIC_IMAGES_2
 Storage Area: PHOTO_AREA2
 Thresholds are (99, 100, 100)
 Comment: Happy Smiling Faces?
 Partition: (4) SYSTEM_LARGE_OBJECTS
 Fill Randomly
 Storage Area: RDB$SYSTEM
SQL>
SQL> commit;

10.1.16 RDM$BIND_MAX_DBR_COUNT Documentation
Clarification

Bugs 1495227 and 3916606

The Rdb7 Guide to Database Performance and Tuning Manual, Volume 2, page A−18, incorrectly describes
the use of the RDM$BIND_MAX_DBR_COUNT logical.

Following is an updated description. Note that the difference in actual behavior between what is in the
existing documentation and software is that the logical name only controls the number of database recovery
processes created at once during "node failure" recovery (that is, after a system or monitor crash or other
abnormal shutdown) for each database.

When an entire database is abnormally shut down (due, for example, to a system failure), the database will
have to be recovered in a "node failure" recovery mode. This recovery will be performed by another monitor
in the cluster if the database is opened on another node or will be performed the next time the database is

Oracle® Rdb for OpenVMS

10.1.16 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 243

opened.

The RDM$BIND_MAX_DBR_COUNT logical name and the RDB_BIND_MAX_DBR_COUNT
configuration parameter define the maximum number of database recovery (DBR) processes to be
simultaneously invoked by the database monitor for each database during a "node failure" recovery.

This logical name and configuration parameter apply only to databases that do not have global buffers
enabled. Databases that utilize global buffers have only one recovery process started at a time during a "node
failure" recovery.

In a node failure recovery situation with the Row Cache feature enabled (regardless of the global buffer state),
the database monitor will start a single database recovery (DBR) process to recover the Row Cache Server
(RCS) process and all user processes from the oldest active checkpoint in the database.

Per−Database Value

The RDM$BIND_MAX_DBR_COUNT logical name specifies the maximum number of
database recovery processes to run at once for each database. For example, if there are 10
databases being recovered and the value for the RDM$BIND_MAX_DBR_COUNT logical
name is 8, up to 80 database recovery processes would be started by the monitor after a
node failure.

The RDM$BIND_MAX_DBR_COUNT logical name is translated when the monitor process opens a
database. Databases need to be closed and reopened for a new value of the logical to become effective.

10.1.17 Database Server Process Priority Clarification

By default, the database servers (ABS, ALS, DBR, LCS, LRS, RCS) created by the Rdb monitor inherit their
VMS process scheduling base priority from the Rdb monitor process. The default priority for the Rdb monitor
process is 15.

Individual server priorities can be explicitly controlled via system−wide logical names as described in Table
10−1.

Table 10−1 Server Process Priority Logical Names

Logical Name Use

RDM$BIND_ABS_PRIORITY Base Priority for the ABS Server process

RDM$BIND_ALS_PRIORITY Base Priority for the ALS Server process

RDM$BIND_DBR_PRIORITY Base Priority for the DBR Server process

RDM$BIND_LCS_PRIORITY Base Priority for the LCS Server process

RDM$BIND_LRS_PRIORITY Base Priority for the LRS Server process

RDM$BIND_RCS_PRIORITY Base Priority for the RCS Server process

When the Hot Standby feature is installed, the RDMAIJSERVER account is created specifying an account
priority of 15. The priority of AIJ server processes on your system can be restricted with the system−wide
logical name RDM$BIND_AIJSRV_PRIORITY. If this logical name is defined to a value less than 15, an

Oracle® Rdb for OpenVMS

10.1.17 Database Server Process Priority Clarification 244

AIJ server process will adjust its base priority to the value specified when the AIJ server process starts. Values
from 0 to 31 are allowed for RDM$BIND_AIJSRV_PRIORITY, but the process is not able to raise its priority
above the RDMAIJSERVER account value.

For most applications and systems, Oracle discourages changing the server process priorities.

10.1.18 Explanation of SQL$INT in a SQL Multiversion
Environment and How to Redefine SQL$INT

Bug 2500594

In an environment running multiple versions of Oracle Rdb, for instance Rdb V7.0 and Rdb V7.1, there are
now several varianted SQL images, such as SQL$70.EXE and SQL$71.EXE. However, SQL$INT.EXE is not
varianted but acts as a dispatcher using the translation of the logical name RDMS$VERSION_VARIANT to
activate the correct SQL runtime environment. This image is replaced when a higher version of Oracle Rdb is
installed. Thus, using the example above, when Rdb V7.1 is installed, SQL$INT.EXE will be replaced with
the V7.1 SQL$INT.EXE.

If an application is linked in this environment (using V7.1 SQL$INT) and the corresponding executable
deployed to a system running Oracle Rdb V7.0 multiversion only, the execution of the application may result
in the following error:

%IMGACT−F−SYMVECMIS, shareable image's symbol vector table mismatch

In order to avoid such a problem, the following alternative is suggested:

In the multiversion environment running both Oracle Rdb V7.0 and Oracle Rdb V7.1, run Oracle Rdb V7.0
multiversion by running the command procedures RDB$SETVER.COM 70 and RDB$SETVER RESET. This
will set up the necessary logical names and symbols that establish the Oracle Rdb V7.0 environment.

For example:

$ @SYS$LIBRARY:RDB$SETVER 70

Current PROCESS Oracle Rdb environment is version V7.0−63 (MULTIVERSION)
Current PROCESS SQL environment is version V7.0−63 (MULTIVERSION)
Current PROCESS Rdb/Dispatch environment is version V7.0−63 (MULTIVERSION)

$ @SYS$LIBRARY:RDB$SERVER RESET

Now run SQL and verify that the version is correct:

$ sql$
SQL> show version
Current version of SQL is: Oracle Rdb SQL V7.0−63

Define SQL$INT to point to the varianted SQL$SHR.EXE. Then, create an options file directing the linker to
link with this newly defined SQL$INT. An example follows:

Oracle® Rdb for OpenVMS

10.1.18 Explanation of SQL$INT in a SQL Multiversion Environment and How to Redefine SQL$INT245

$ DEFINE SQL$INT SYS$SHARE:SQL$SHR'RDMS$VERSION_VARIANT'.EXE
$ LINK TEST_APPL,SQL$USER/LIB,SYS$INPUT/option
SQL$INT/SHARE
^Z

The executable is now ready to be deployed to the Oracle Rdb V7.0 multiversion environment and should run
successfully.

Please note that with each release of Oracle Rdb, new entry points are added to the SQL$INT shareable
image. This allows the implementation of new functionality. Therefore, applications linked with SQL$INT
from Oracle Rdb V7.1 cannot be run on systems with only Oracle Rdb V7.0 installed. This is because the
shareable image does not contain sufficient entry points.

The workaround presented here allows an application to explicitly link with the Oracle Rdb V7.0 version of
the image. Such applications are upward compatible and will run on Oracle Rdb V7.0 and Oracle Rdb V7.1.
The applications should be compiled and linked under the lowest version.

In environments where Oracle Rdb V7.1 is installed, this workaround is not required because the SQL$INT
image will dynamically activate the appropriate SQL$SHRxx image as expected.

10.1.19 Clarification of PREPARE Statement Behavior

Bug 2581863

According to the Oracle Rdb7 SQL Reference Manual, Volume 3 page 7−227, when using a statement−id
parameter for PREPARE "if that parameter is an integer, then you must explicitly initialize that integer to zero
before executing the PREPARE statement".

This description is not correct and should be replaced with this information:

If the statement−id is non−zero and does not match any prepared statement (the id was stale or
contained a random value), then an error is raised:
%SQL−F−BADPREPARE, Cannot use DESCRIBE or EXECUTE on a statement that is not prepared

1.

If the statement−id is non−zero, or the statement name is one that has previously been used and
matches an existing prepared statement, then that statement is automatically released prior to the
prepare of the new statement. Please refer to the RELEASE statement for further details.

2.

If the statement−id is zero or was automatically released, then a new statement−id is allocated and the
statement prepared.

3.

Please note that if you use statement−name instead of a statement−id−parameter then SQL will implicitly
declare an id for use by the application. Therefore, the semantics described apply similarly when using the
statement−name. See the RELEASE statement for details.

10.1.20 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides
the Database Parameter

Bug 2203700

When starting a transaction, there are three different values that are used to determine the lock timeout
interval for that transaction. Those values are:

Oracle® Rdb for OpenVMS

10.1.19 Clarification of PREPARE Statement Behavior 246

The value specified in the SET TRANSACTION statement1.
The value stored in the database as specified in CREATE or ALTER DATABASE2.
The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL3.

The timeout interval for a transaction is the smaller of the value specified in the SET TRANSACTION
statement and the value specified in CREATE DATABASE. However, if the logical name
RDM$BIND_LOCK_TIMEOUT_INTERVAL is defined, the value of this logical name overrides the value
specified in CREATE DATABASE.

The description of how these three values interact, found in several different parts of the Rdb documentation
set, is incorrect and will be replaced by the description above.

The lock timeout value in the database can be dynamically modified from the Locking Dashboard in
RMU/SHOW STATISTICS. The Per−Process Locking Dashboard can be used to dynamically override the
logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL for one or more processes.

10.1.21 Missing Tables Descriptions for the RDBEXPERT
Collection Class

Appendix B in the Oracle Rdb7 Guide to Database Performance and Tuning describes the event−based data
tables in the formatted database for the Oracle Rdb PERFORMANCE and RDBEXPERT collection classes.
This section describes the missing tables for the RDBEXPERT collection class.

Table 10−2 shows the TRANS_TPB table.

Table 10−2 Columns for Table EPC$1_221_TRANS_TPB

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

TPB VARCHAR(127)

TPB_STR_ID INTEGER STR_ID_DOMAIN

Table 10−3 shows the TRANS_TPB_ST table. An index is provided for this table. It is defined with column
STR_ID, duplicates are allowed, and the type is sorted.

Table 10−3 Columns for Table EPC$1_221_TRANS_TPB_ST

Column Name Data Type Domain

Oracle® Rdb for OpenVMS

10.1.21 Missing Tables Descriptions for the RDBEXPERT Collection Class 247

STR_ID INTEGER STR_ID_DOMAIN

SEGMENT_NUMBER SMALLINT SEGMENT_NUMBER_DOMAIN

STR_SEGMENT VARCHAR(128)

10.1.22 Missing Columns Descriptions for Tables in the
Formatted Database

Some of the columns were missing from the tables in Appendix B in the Oracle Rdb7 Guide to Database
Performance and Tuning. The complete table definitions are described in this section.

Table 10−4 shows the DATABASE table.

Table 10−4 Columns for Table EPC$1_221_DATABASE

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

DB_NAME VARCHAR(255)

DB_NAME_STR_ID INTEGER STR_ID_DOMAIN

IMAGE_FILE_NAME VARCHAR(255)

IMAGE_FILE_NAME_STR_ID INTEGER STR_ID_DOMAIN

Table 10−5 shows the REQUEST_ACTUAL table.

Table 10−5 Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

Oracle® Rdb for OpenVMS

10.1.22 Missing Columns Descriptions for Tables in the Formatted Database 248

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER

S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER

S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

S_ASYNC_READIO_START INTEGER

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

Oracle® Rdb for OpenVMS

10.1.22 Missing Columns Descriptions for Tables in the Formatted Database 249

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CLIENT_PC_END INTEGER

STREAM_ID_END INTEGER

REQ_ID_END INTEGER

COMP_STATUS_END INTEGER

REQUEST_OPER_END INTEGER

TRANS_ID_END VARCHAR(16)

TRANS_ID_END_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

Oracle® Rdb for OpenVMS

10.1.22 Missing Columns Descriptions for Tables in the Formatted Database 250

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

Table 10−6 shows the TRANSACTION table.

Table 10−6 Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

CLIENT_PC_START INTEGER

STREAM_ID_START INTEGER

LOCK_MODE_START INTEGER

TRANS_ID_START VARCHAR(16)

TRANS_ID_START_STR_ID INTEGER STR_ID_DOMAIN

Oracle® Rdb for OpenVMS

10.1.22 Missing Columns Descriptions for Tables in the Formatted Database 251

GLOBAL_TID_START VARCHAR(16)

GLOBAL_TID_START_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER

S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER

S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

Oracle® Rdb for OpenVMS

10.1.22 Missing Columns Descriptions for Tables in the Formatted Database 252

S_ASYNC_READIO_START INTEGER

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

AREA_ITEMS_START VARCHAR(128)

AREA_ITEMS_START_STR_IDINTEGER STR_ID_DOMAIN

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CROSS_FAC_2_START INTEGER

CROSS_FAC_3_START INTEGER

CROSS_FAC_7_START INTEGER

CROSS_FAC_14_START INTEGER

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

Oracle® Rdb for OpenVMS

10.1.22 Missing Columns Descriptions for Tables in the Formatted Database 253

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

AREA_ITEMS_END VARCHAR(128)

AREA_ITEMS_END_STR_ID INTEGER STR_ID_DOMAIN

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

CROSS_FAC_2_END INTEGER

CROSS_FAC_3_END INTEGER

CROSS_FAC_7_END INTEGER

CROSS_FAC_14_END INTEGER

Table 10−7 shows the REQUEST_BLR table.

Oracle® Rdb for OpenVMS

10.1.22 Missing Columns Descriptions for Tables in the Formatted Database 254

Table 10−7 Columns for Table EPC$1_221_REQUEST_BLR

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

REQ_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

REQUEST_NAME VARCHAR(31)

REQUEST_NAME_STR_ID INTEGER STR_ID_DOMAIN

REQUEST_TYPE INTEGER

BLR VARCHAR(127)

BLR_STR_ID INTEGER STR_ID_DOMAIN

Oracle® Rdb for OpenVMS

10.1.22 Missing Columns Descriptions for Tables in the Formatted Database 255

10.2 Address and Phone Number Correction for
Documentation
In release 7.0 or earlier documentation, the address and fax phone number listed on the Send Us Your
Comments page are incorrect. The correct information is:

FAX −− 603.897.3825
Oracle Corporation
One Oracle Drive
Nashua, NH 03062−2804
USA

10.2 Address and Phone Number Correction for Documentation 256

10.3 Online Document Format and Ordering
Information
You can view the documentation in Adobe Acrobat format using the Acrobat Reader, which allows anyone to
view, navigate, and print documents in the Adobe Portable Document Format (PDF). See
http://www.adobe.com for information about obtaining a free copy of Acrobat Reader and for information on
supported platforms.

The Oracle Rdb documentation in Adobe Acrobat format is available on MetaLink:

Top Tech Docs\Oracle Rdb\Documentation\<bookname>

Customers should contact their Oracle representative to purchase printed documentation.

10.3 Online Document Format and Ordering Information 257

Chapter 11
Known Problems and Restrictions
This chapter describes problems and restrictions relating to Oracle Rdb and includes workarounds where
appropriate.

Chapter 11Known Problems and Restrictions 258

11.1 Known Problems and Restrictions in All
Interfaces
This section describes known problems and restrictions that affect all interfaces. This is not an exhaustive list.
Check the Oracle Bug database to see a list of all open Rdb bugs and their current status.

11.1.1 Aggregate Query With Filter Predicates Returns
Wrong Result

Bug 14133515

Oracle Rdb may return the wrong results if an aggregate FILTER clause is used that references the same
column being aggregated and that column has a SORTED or SORTED RANKED index.

In such cases, the optimization strategies "Max Key Lookup", "Min Key Lookup", "Index counts lookup", and
"Index distinct lookup" will be chosen and these strategies do not currently apply the FILTER clause.

Consider these examples which report 3 rows:

SQL> select middle_initial from employees where middle_initial = 'R';
Tables:
 0 = EMPLOYEES
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [1:1]
 Keys: 0.MIDDLE_INITIAL = 'R'
 MIDDLE_INITIAL
 R
 R
 R
3 rows selected
SQL>
SQL> select count(middle_initial) from employees where middle_initial = 'R';
Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [1:1] Index counts lookup
 Keys: 0.MIDDLE_INITIAL = 'R'

 3
1 row selected
SQL>

However, these queries return the wrong result (100 rows) if the predicate is applied as a filter.

SQL> select count(middle_initial) filter (where middle_initial = 'R')
cont> from EMPLOYEES;
Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
 Bool: 0.MIDDLE_INITIAL = 'R'
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [0:0] Index counts lookup

11.1 Known Problems and Restrictions in All Interfaces 259

 100
1 row selected
SQL>

Similar aggregate queries with MAX and MIN functions with FILTER predicates also fail.

These problems will corrected in the next major release of Oracle Rdb.

11.1.2 Session Crash if Run Time Routine Native Compiler
Enabled

Bug 13495444

A session may crash when using the Interpreter Compiler on Itanium (SET FLAGS
'CODE_OPTIMIZATION(2)'), which is the default, in some rare instances where a large single code routine
is generated because of a long complicated query segment (for example, a long arithmetic expression). When
executing the generated code, a stack corruption can occur resulting in the current process being deleted.

Turning off the Interpreter Compiler by using SET FLAGS 'CODE_OPTIMIZATION(0)' is a viable
workaround.

11.1.3 Possible Incorrect Results When Using Partitioned
Descending Indexes

Bug 6129797

In the current release of Oracle Rdb, 7.2.4, it is possible for some queries using partitioned indexes with
segments of mixed ascending and descending order to return incorrect results either on Alpha or I64 systems.

The following examples show two problems when using partitioned index with segments of mixed ascending
and descending order:

create database file foo
 create storage area fooa
 create storage area foob;

create table mesa (id integer, m4 char (1), m5 integer);
create table rasa (id integer, r4 char (1), r5 integer);

insert into mesa (id, m4, m5) values (1, 'm', 1);

insert into rasa (id, r4, r5) values (1, 'm', 1);
insert into rasa (id, r4, r5) values (1, 'k', 1);
insert into rasa (id, r4, r5) values (1, 'e', 1);

create index x4 on mesa (id asc , m4 asc) ;

! The following index contains ascending segments followed by descending
! segments and thus causes the query to return the wrong result.
!
! Note that the query works if both segments are either ascending or descending.
!
create index y4 on rasa (id asc , r4 desc)

Oracle® Rdb for OpenVMS

11.1.2 Session Crash if Run Time Routine Native Compiler Enabled 260

 store using (id, r4)
 in fooa with limit of (1, 'g')
 otherwise in foob ;
commit;

! Problem #1:
!
! the following query returns correctly 3 rows on Alpha but 1 row on IA64:

SQL> select m.id, m.m4, r.r4 from
 mesa m inner join rasa r on (m.id = r.id);
 1 m m
 1 m k
 1 m e
3 rows selected

SQL> select m.id, m.m4, r.r4 from mesa m inner join rasa r on (m.id = r.id);
 1 m e
1 row selected

! Problem #2:
!
! The following query using reverse scan returns 2 rows incorrectly on Alpha
! but 3 rows correctly on IA64:
!

SQL> select id, r4 from rasa where id = 1 and r4 <= 'm' order by id, r4;
Tables:
 0 = RASA
Index only retrieval of relation 0:RASA
 Index name Y4 [2:1] Reverse Scan
 Keys: (0.ID = 1) AND (0.R4 <= 'm')
 ID R4
 1 k
 1 m
2 rows selected

SQL> select id, r4 from rasa where id = 1 and r4 <= 'm' order by id, r4;
Tables:
 0 = RASA
Index only retrieval of relation 0:RASA
 Index name Y4 [2:1] Reverse Scan
 Keys: (0.ID = 1) AND (0.R4 <= 'm')
 ID R4
 1 e
 1 k
 1 m
3 rows selected

This problem is related to the construction and comparison of the descending key values during the index
partitions.

The problem will be corrected in a future version of Oracle Rdb.

11.1.4 Remote Attach Stalls Before Detecting a Node is
Unreachable

Bug 7681548

Oracle® Rdb for OpenVMS

11.1.4 Remote Attach Stalls Before Detecting a Node is Unreachable 261

A remote attach can stall for a noticeable period, typically 75 seconds, before detecting a node is unreachable.

The following example shows the expected error message when attempting to access a database on a node that
is not reachable. The problem is that when the value of the parameter
SQL_NETWORK_TRANSPORT_TYPE in the file RDB$CLIENT_DEFAULTS.DAT is not specifically set
to DECNET (in UPPER CASE), a stall of typically 75 seconds will happen before you get the expected error
message.

SQL> attach 'file 1::disk1:[dbdir]db';
%SQL−F−ERRATTDEC, Error attaching to database 1::disk1:[dbdir]db
−RDB−F−IO_ERROR, input or output error
−SYSTEM−F−UNREACHABLE, remote node is not currently reachable

There are two possible ways to avoid the stall and get the error message after a user configurable period of
time or instantly: decrease the value of the TCPIP parameter TCP_KEEPINIT, or explicitly specify
SQL_NETWORK_TRANSPORT_TYPE as DECNET (in UPPER CASE).

The default behavior when attempting to connect to an unreachable node via TCPIP is to stall 75
seconds before returning an error. The stall time is configurable in TCPIP via the parameter
TCP_KEEPINIT which is expressed in units of 500 ms. The default value of TCP_KEEPINIT is 150
which corresponds to a 75 second stall.

•

When connecting via DECnet, the error message is typically returned instantly so a significant stall
will not be seen in this case. However, the value of the parameter
SQL_NETWORK_TRANSPORT_TYPE is case sensitive so for DECnet to be selected as the
transport, "DECNET" must be specified in UPPER CASE. Failing to do so will result in connecting
via the DEFAULT method which is to first try connecting via DECnet and if that fails attempt to
connect via TCPIP and hence a 75 second stall will take place unless TPC_KEEPINIT is set to a
value lower than 150.

•

11.1.5 Case Sensitive Values in
RDB$CLIENT_DEFAULTS.DAT

Bug 7681548

Various characteristics for network access to remote databases can be specified by entering parameters and
values in a file named RDB$CLIENT_DEFAULTS.DAT. The following keywords that have character strings
as their values only take effect if the values are specified in UPPER CASE:
SQL_NETWORK_TRANSPORT_TYPE, SQL_MESSAGE_VECTOR_RETURN_TYPE, and
SQL_DEFAULTS_RESTRICTION. The result of including one or more lower case characters in the value of
one of these parameters is the same as if the parameter was not specified at all (for example, the default
behavior would be applied and no error message would be issued).

In the following example, DECnet is specified with the last three characters in lower case. The result will be
that the value of the parameter SQL_NETWORK_TRANSPORT_TYPE will be DEFAULT and not the
intended value DECNET.

SQL_NETWORK_TRANSPORT_TYPE DECnet

Oracle® Rdb for OpenVMS

11.1.5 Case Sensitive Values in RDB$CLIENT_DEFAULTS.DAT 262

This problem can be avoided by specifying the values for SQL_NETWORK_TRANSPORT_TYPE,
SQL_MESSAGE_VECTOR_RETURN_TYPE, and SQL_DEFAULTS_RESTRICTION in
RDB$CLIENT_DEFAULTS.DAT using UPPER CASE.

In the next major release of Oracle Rdb, the values in RDB$CLIENT_DEFAULTS.DAT will be case
insensitive.

11.1.6 Standalone WITH Clause in Compound Statements
Now Deprecated

In prior versions of Oracle Rdb, it was permitted to follow the BEGIN keyword in a top level compound
statement or stored routine with a WITH HOLD clause to specify that the procedure treated all FOR loops as
HOLD cursors.

Unfortunately, this syntax conflicts with recent syntax added to the ANSI and ISO SQL Database Language
standard. Support for this new syntax (known as subquery factoring) is used by Oracle tools accessing Oracle
Rdb through OCI Services for Rdb. Therefore, to accommodate this change Oracle will remove the WITH
HOLD syntax as a standalone clause after the BEGIN keyword. The alternate syntax, available since Oracle
Rdb V7.1, is to use the PRAGMA clause which allows the WITH HOLD clause to be specified.

Any applications or SQL command files must be modified prior to the next major release of Oracle Rdb. At
that time, the old syntax will be removed and the new WITH clause (aka subquery factoring) will be
introduced.

The following example shows the old syntax, which now produces a deprecated message.

SQL> begin
cont> with hold preserve none
%SQL−I−DEPR_FEATURE, Deprecated Feature: WITH HOLD no longer supported in
this context − use PRAGMA (WITH HOLD) instead
cont> trace 'a';
cont> end;

It should be replaced with the following syntax which provides the same behavior.

SQL> begin
cont> pragma (with hold preserve none)
cont> trace 'a';
cont> end;

11.1.7 Calling DECC$CRTL_INIT

In cases where user−supplied code is being called by Oracle Rdb (such as an external function, a module
called implementing the Oracle Backup API, or a user−supplied output routine for the Oracle Rdb LogMiner),
if calls are made to certain DECC$SHR RTL routines, it may be required to first call DECC$CRTL_INIT.

DECC$CRTL_INIT is a C run time library routine that allows developers to call the HP C RTL from other
languages or to use the HP C RTL when the main function is not in C. It initializes the run−time environment
and establishes both an exit and condition handler. The Oracle Rdb main images are not written in C and
should not be expected to have called DECC$CRTL_INIT prior to the user's code being invoked. The

Oracle® Rdb for OpenVMS

11.1.6 Standalone WITH Clause in Compound Statements Now Deprecated 263

requirement for DECC$CRTL_INIT in certain cases exists in all versions of Oracle Rdb.

A shareable image need only call this function if it contains an HP C function call for signal handling,
environment variables, I/O, exit handling, a default file protection mask, or if it is a child process that should
inherit context. Although many of the initialization activities are performed only once, DECC$CRTL_INIT
can safely be called multiple times.

See the HP C Run−Time Library Reference Manual for OpenVMS Systems manual for additional
information.

11.1.8 Application and Oracle Rdb Both Using SYS$HIBER

In application processes that use Oracle Rdb and the SYS$HIBER system service (possibly via RTL routines
such as LIB$WAIT), it is very important that the application ensures that the event being waited for has
actually occurred. Oracle Rdb utilizes $HIBER/$WAKE sequences for interprocess communication and
synchronization.

Because there is just a single process−wide "hibernate" state along with a single process−wide "wake
pending" flag, Oracle Rdb must assume that it "shares" use of the hibernate/wake state with the user's
application code. To this end, Oracle Rdb generally will re−wake the process via a pending wake request after
using a hibernate sequence.

Oracle Rdb's use of the $WAKE system service will interfere with other users of $HIBER (such as the routine
LIB$WAIT) that do not check for event completion, possibly causing a $HIBER to be unexpectedly resumed
without waiting at all.

To avoid these situations, applications that use HIBER/WAKE facilities must use a code sequence that avoids
continuing without a check for the operation (such as a delay or a timer firing) being complete.

The following pseudo−code shows one example of how a flag can be used to indicate that a timed−wait has
completed correctly. The wait does not complete until the timer has actually fired and set TIMER_FLAG to
TRUE. This code relies on ASTs being enabled.

ROUTINE TIMER_WAIT:
 BEGIN
 ! Clear the timer flag
 TIMER_FLAG = FALSE

 ! Schedule an AST for sometime in the future
 STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
 IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)

 ! Hibernate. When the $HIBER completes, check to make
 ! sure that TIMER_FLAG is set indicating that the wait
 ! has finished.
 WHILE TIMER_FLAG = FALSE
 DO SYS$HIBER()
 END

ROUTINE TIMER_AST:
 BEGIN
 ! Set the flag indicating that the timer has expired
 TIMER_FLAG = TRUE

Oracle® Rdb for OpenVMS

11.1.8 Application and Oracle Rdb Both Using SYS$HIBER 264

 ! Wake the main−line code
 STAT = SYS$WAKE ()
 IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)
 END

Starting with OpenVMS V7.1, the LIB$WAIT routine includes a FLAGS argument (with the
LIB$K_NOWAKE flag set) to allow an alternate wait scheme (using the $SYNCH system service) that can
avoid potential problems with multiple code sequences using the $HIBER system service. See the OpenVMS
RTL Library (LIB$) Manual for more information about the LIB$WAIT routine.

In order to prevent application hangs, inner−mode users of SYS$HIBER must take explicit steps to ensure
that a pending wake is not errantly " consumed ". The general way of accomplishing this is to issue a
SYS$WAKE to the process after the event is complete if a call to SYS$HIBER was done. Rdb takes this step
and therefore application programs must be prepared for cases where a wakeup might appear unexpectedly.

11.1.9 Unexpected RCS Termination

It has been observed in internal testing of Rdb Release 7.2.2 that if the Record Cache Server (the RCS)
terminates in an uncontrolled fashion this may, under some conditions, cause corruption of the database
and/or the After Image Journal file.

When the RCS terminates, the database is shut down and a message like the following is written to the
monitor log:

6−DEC−2007 15:04:17.02 − Received Record Cache Server image termination from
22ED5144:1
 − database name "device:[directory]database.RDB;1" [device] (1200,487,0)
 − abnormal Record Cache Server termination detected
 − starting delete−process shutdown of database:
 − %RDMS−F−RCSABORTED, record cache server process terminated abnormally
 − sending process deletion to process 22ED10F9
 − sending process deletion to process 22ECED59
 − sending process deletion to process 22EC0158
 − sending process deletion to process 22EB9543 (AIJ Log server)
 − database shutdown waiting for active users to terminate

A future attempt to roll forward the AIJ following a restore of a database backup might fail with a bugcheck
dump if this problem has happened.

The only currently known situation where this problem has been observed is if the logical name
RDM$BIND_RCS_VALIDATE_SECS is defined to some value and the logical name
RDM$BIND_RCS_LOG_FILE at the same time is undefined or defined incorrectly.

To prevent this problem, Oracle recommends any customer using the Row Cache feature to either avoid
defining the logical name RDM$BIND_RCS_VALIDATE_SECS or if this logical name for any reason needs
to be defined, to make sure RDM$BIND_RCS_LOG_FILE is correctly defined (i.e. defined with the
/SYSTEM and /EXECUTIVE qualifiers and is pointing to a valid file name in an existing directory on a
cluster accessible device with sufficient free space).

This recommendation applies to all versions of Oracle Rdb.

Oracle® Rdb for OpenVMS

11.1.9 Unexpected RCS Termination 265

11.1.10 Possible Incorrect Results When Using Partitioned
Descending Indexes on I64

When running on I64 systems using Rdb Release 7.2, it is possible when using partitioned descending indexes
for some queries to return incorrect results. Alpha systems are not effected by this problem.

The following example shows this difference in behavior between Alpha and I64 when using partitioned
descending indexes:

SQL> CREATE DATABASE FILE FOO
cont> CREATE STORAGE AREA FOOA
cont> CREATE STORAGE AREA FOOB;
SQL>
SQL> CREATE TABLE MESA (ID INTEGER, M4 CHAR (1), M5 INTEGER);
SQL> CREATE TABLE RASA (ID INTEGER, R4 CHAR (1), R5 INTEGER);
SQL>
SQL> INSERT INTO MESA (ID, M4, M5) VALUES (1, 'M', 1);
1 row inserted
SQL> INSERT INTO RASA (ID, R4, R5) VALUES (1, 'M', 1);
1 row inserted
SQL>
SQL> CREATE INDEX X4 ON MESA (ID ASC , M4 DESC)
cont> STORE USING (ID, M4)
cont> IN FOOA WITH LIMIT OF (1, 'G')
cont> OTHERWISE IN FOOB ;
SQL>
SQL> CREATE INDEX Y4 ON RASA (ID ASC , R4 DESC)
cont> STORE USING (ID, R4)
cont> IN FOOA WITH LIMIT OF (1, 'G')
cont> OTHERWISE IN FOOB ;
SQL>
SQL> COMMIT;

 ! This query correctly returns 1 row
 ! on Alpha but returns 0 rows on I64:

SQL> SELECT M.ID, M.M4, R.R4 FROM
cont> MESA M INNER JOIN RASA R ON (M.ID = R.ID);
0 rows selected
SQL>

This problem is related to the construction and comparison of the descending key values with Oracle Rdb
running on I64. This problem will be corrected in a future Rdb 72 release.

11.1.11 Changes for Processing Existence Logical Names

This release of Oracle Rdb will change the handling of so called "existence" logical names used to tune the
Rdb environment. These existence logical names could in past versions be defined to any value to enable their
effect. The Rdb documentation in most cases described using the value 1 or YES as that value and this change
is upward compatible with the documentation.

Rdb now treats these logical names (see the list below) as Boolean logicals and accepts a string starting with
"Y", "y", "T", "t" or "1" to mean TRUE. All other values will be considered to be FALSE. This change allows
process level definitions to override definitions in higher logical name tables which was not possible
previously.

Oracle® Rdb for OpenVMS

11.1.10 Possible Incorrect Results When Using Partitioned Descending Indexes on I64 266

Oracle recommends that customers examine all procedures that define the following logical names to ensure
that their values conform to these rules prior to upgrading to Oracle Rdb V7.2.1.1 or later to avoid unexpected
changes in behavior.

RDMS$AUTO_READY•
RDMS$DISABLE_HIDDEN_KEY•
RDMS$DISABLE_MAX_SOLUTION•
RDMS$DISABLE_REVERSE_SCAN•
RDMS$DISABLE_TRANSITIVITY•
RDMS$DISABLE_ZIGZAG_BOOLEAN•
RDMS$ENABLE_BITMAPPED_SCAN•
RDMS$ENABLE_INDEX_COLUMN_GROUP•
RDMS$MAX_STABILITY•
RDMS$USE_OLD_COST_MODEL•
RDMS$USE_OLD_COUNT_RELATION•
RDMS$USE_OLD_SEGMENTED_STRING•
RDMS$USE_OLD_UPDATE_RULES•

11.1.12 Patch Required When Using VMS V8.3 and
Dedicated CPU Lock Manager

During qualification testing of Oracle Rdb Release 7.2.1 on OpenVMS V8.3 systems, a problem with the use
of Extended Lock Value Blocks and the OpenVMS Dedicated CPU Lock Manager feature was discovered.

To avoid this problem, Oracle strongly recommends that customers wishing to use Oracle Rdb and the
OpenVMS Dedicated CPU Lock Manager feature with OpenVMS V8.3 install one of the following
architecture−specific patch kit (or subsequent replacement if superseded) prior to using Oracle Rdb Release
7.2.1 on OpenVMS V8.3 systems:

VMS83I_SYS−V0200 (I64)•
VMS83A_SYS−V0100 (Alpha)•

11.1.13 SQL Module or Program Fails with
%SQL−F−IGNCASE_BAD

Bug 2351258

A SQL Module or Pre−compiled SQL program built with Rdb 6.1 or earlier may fail when running under Rdb
7.2 if the program submits queries that involve certain kinds of character operations on parameters in the
queries. For example, a LIKE operator in the WHERE clause of a SQL statement requires SQL to look for
character− or string−matching wildcard characters. Another example is the use of IGNORE CASE which
causes SQL to equivalence upper and lower case characters for the character set in use.

The following example shows a portion of a SQL module language program that queries a PERSONNEL
database.

DECLARE MANL_NAME_LIST CURSOR FOR

Oracle® Rdb for OpenVMS

11.1.12 Patch Required When Using VMS V8.3 and Dedicated CPU Lock Manager 267

 SELECT DISTINCT E.LAST_NAME,E.FIRST_NAME,J.JOB_CODE,J.DEPARTMENT_CODE,E.CITY
FROM DB1_HANDLE.EMPLOYEES E,DB1_HANDLE.JOB_HISTORY J
 WHERE J.EMPLOYEE_ID = E.EMPLOYEE_ID
 AND E.STATUS_CODE = STATUS_CODE
 AND E.CITY LIKE CITYKEY IGNORE CASE
 ORDER BY E.EMPLOYEE_ID DESC, E.LAST_NAME DESC

PROCEDURE SQL_OPN_NAME_LIST
SQLCODE
CITYKEY CHAR(20)
STATUS_CODE CHAR(1);
OPEN MANL_NAME_LIST;

If the SQL Module containing the code above is compiled and linked into an executable using a pre−7.0
version of Rdb, it will run properly against that version. However if the same program is run in an Rdb 7.2
environment, a call to the SQL_OPN_NAME_LIST procedure will return a SQLCODE of −1. The
RDB$MESSAGE_VECTOR will contain a code associated with the following message:

%SQL−F−IGNCASE_BAD, IGNORE CASE not supported for character set

To workaround this problem, re−link the program using a 7.2 version of SQL$INT.EXE and/or
SQL$USER.OLB.

11.1.14 External Routine Images Linked with
PTHREAD$RTL

The OpenVMS Guide to the POSIX Threads Library describes that it is not supported to dynamically activate
the core run−time library shareable image PTHREAD$RTL. Oracle has found in testing that a shareable
image supplied for use as an External Routine that is linked with PTHREAD$RTL can be expected to cause a
hang during dynamic image activation on OpenVMS I64 systems. This problem has not been observed on
OpenVMS Alpha systems.

To avoid this problem in any case where the shareable image used for an Rdb External Routine is linked with
PTHREAD$RTL, the main program image must likewise be linked with PTHREAD$RTL. This requirement
applies to customer built application main programs as well as the main interactive SQL image.

The shareable image RDB$NATCONN_FUNC72.EXE supplied with OCI Services for Oracle Rdb (part of
SQL/Services) is one such shareable image that is linked with PTHREAD$RTL. Customer built applications
that utilize External Routines from the RDB$NATCONN_FUNC72.EXE image must ensure that the main
image is linked with PTHREAD$RTL. The external routines that a user may call that use functions from
RDB$NATCONN_FUNC72.EXE include:

TO_CHAR•
TO_NUMBER•
TO_DATE•

You can use the OpenVMS command ANALYZE/IMAGE to determine whether an image depends upon
PTHREAD$RTL. For more information, see the OpenVMS documentation.

Oracle® Rdb for OpenVMS

11.1.14 External Routine Images Linked with PTHREAD$RTL 268

11.1.15 Using Databases from Releases Earlier than V7.0

You cannot convert or restore databases earlier than the Oracle Rdb V7.0 format directly to Oracle Rdb V7.2
format. The RMU Convert command for Oracle Rdb V7.2 supports conversions from Oracle Rdb V7.0 and
V7.1 format databases only. If you have an Oracle Rdb V3.0 through V6.1 format database, you must convert
it to at least Oracle Rdb V7.0 format and then convert it to Oracle Rdb V7.2 format. For example, if you have
a V4.2 format database, you must convert it first to at least Oracle Rdb V7.0 format, then convert it to Oracle
Rdb V7.2 format.

If you attempt to convert or restore a database that is prior to Oracle Rdb V7.0 format directly to Oracle Rdb
V7.2 format, Oracle RMU generates an error.

11.1.16 Partitioned Index with Descending Column and
Collating Sequence

Bug 2797443

A known problem exists in which a query can return wrong results (number of rows returned is incorrect).
This can happen on a table that has a multi−column, partitioned index in which one of the columns is sorted in
descending order and the column has an associated collating sequence.

The following example can be used to demonstrate the problem.

$ sql$
create database file mf_collating.rdb alloc 10
 collating sequence french french
 create storage area area1 alloc 10
 create storage area area2 alloc 10
 create storage area area3 alloc 10;
create table tab1 (id tinyint, r3 char (3));
insert into tab1 (id, r3) values (1, 'a');
insert into tab1 (id, r3) values (1, 'b');
insert into tab1 (id, r3) values (1, 'f');
create index y3 on tab1 (id asc, r3 desc)
 store using (id, r3)
 in area1 with limit of (1, 'k')
 in area2 with limit of (1, 'e')
 otherwise in area3 ;
commit;

set flags 'strategy';

! Here is a query that returns the correct rows using sequential rather
! than indexed access.

select id, r3 from tab1 where id = 1 and r3 <= 'e'
 optimize for sequential access;
Conjunct Get Retrieval sequentially of relation TAB1
 ID R3
 1 a
 1 b
2 rows selected

! Here is the same query without the sequential access restriction.
! Note in the query strategy that index Y3 is used for data retrieval.

Oracle® Rdb for OpenVMS

11.1.15 Using Databases from Releases Earlier than V7.0 269

! This query ought to (but does not) return the same set of rows as
! for the sequential access query.

select id, r3 from tab1 where id = 1 and r3 <= 'e';
Leaf#01 FFirst TAB1 Card=3
 BgrNdx1 Y3 [2:1] Fan=16
0 rows selected

11.1.17 Domain−Qualified TCP/IP Node Names in
Distributed Transactions

Bug 3735144

When using TCP/IP for Oracle Rdb remote connections, distributed transactions involving databases on nodes
which are not on the same subnet may not work.

Remote Rdb has the capability to make remote connections via TCP/IP in lieu of DECnet. (See the Oracle
Rdb OpenVMS Installation and Configuration Guide for how to set this up.) However, distributed
transactions involving remote databases connected to via TCP/IP have been difficult. This is because Rdb
relies on OpenVMS DECdtm for distributed transaction support and DECdtm requires DECnet for off−node
communication. (This is an OpenVMS and not an Rdb restriction. Contact Hewlett−Packard OpenVMS
Support for more details.)

OpenVMS provides a capability to run DECnet over TCP/IP so that OpenVMS services which require
DECnet (like DECdtm) can operate in an environment where a TCP/IP network is used as the
communications backbone. This capability allows DECdtm (and hence Rdb) to manage distributed
transactions via TCP/IP. (See HP's OpenVMS DECnet−Plus documentation set for how to configure and use
this capability.)

However, for a transaction involving a remote database, Rdb only provides the SCSNODE name of the
remote node to DECdtm. For example, consider the following SQL attaches to two remote databases using
TCP/IP:

SQL> attach 'alias db1 filename node1.a.b.c::db_root:db1 user ''me'' using
''pw''';
SQL> attach 'alias db2 filename node1.a.b.c::db_root:db2 user ''me'' using
''pw''';

In the above example, Rdb can successfully connect to both remote databases using the TCP/IP address
"node1.a.b.c." but when multiple databases are attached, Rdb implicitly uses distributed transactions via
DECdtm. Since Rdb only passes DECdtm the SCSNODE name retrieved from the RDBSERVERnn at the
other end of the connection, DECdtm does not, in general, have the information it needs to resolve the remote
reference. It will only be able to do so if the SCSNODE name and the TCP/IP node name are the same and the
local node is on the same subnet (i.e. ".a.b.c" in the example). Otherwise, after the second attach is made, the
following error message will be received as soon as a transaction is started:

SQL> set trans read write;
%RDB−F−SYS_REQUEST_CAL, error from system services request − called from 100001
−RDB−E−DECDTMERR, DECdtm system service call error
−IPC−E−BCKTRNSFAIL, failure on the back translate address request

Oracle® Rdb for OpenVMS

11.1.17 Domain−Qualified TCP/IP Node Names in Distributed Transactions 270

There are three potential workarounds:

If distributed transactions are unimportant to the application, they can be disabled by defining the
logical name SQL$DISABLE_CONTEXT to TRUE. Rdb will then not call DECdtm and the node
name resolution problem will not be seen. However, it will be the problem of the application to
maintain database integrity in the event that a commit succeeds on one database and not on another.
See the Rdb Guide to Distributed Transactions for more information.

•

If all the nodes involved in the distributed transaction are in the same domain, then TCP/IP can
resolve the node with only the first part of the node provided that the SCSNODE name is identical to
it. In the example above, this would mean that the remote node had an SCSNODE name of "NODE1"
and that the local node was on TCP/IP subnet ".a.b.c".

•

It may also be possible to define a DNS/BIND alias name for the remote node's SCSNODE name to
the local node's TCP/IP database. This should allow the SCSNODE name passed by Rdb Dispatch to
be translated successfully. For example, assuming HP TCP/IP Services for OpenVMS is the TCP/IP
protocol stack then a command like the following could be used on the local node:

$ TCP SET HOST NODE1.A.B.C/address=nnn.nnn.nnn.nnn/alias=NODE1_SCS

Where "nnn.nnn.nnn.nnn" is the IP address and "NODE1_SC" the OpenVMS SCSNODE name of the
remote node. See the HP DECnet−Plus documentation set for more information on how to maintain
TCP/IP domain databases.

•

11.1.18 ILINK−E−INVOVRINI Error on I64

When linking an application with multiple modules, the following error message may be returned:

%ILINK−E−INVOVRINI, incompatible multiple initializations for overlaid section
 section: VMSRDB
 module: M1
 file: DKA0:[BLD]M1.OBJ;1
 module: M2
 file: DKA0:[BLD]SYS.OLB;1

On I64 systems, it is not allowed to have a program section that attempts to be initialized a subsequent time
where the non−zero portions of the initializations do not match. This is a difference from OpenVMS Alpha
and VAX systems where the linker permitted such initializations.

If the modules specified are SQL module language or precompiler produced, the application build procedures
usually need to be modified. Typically, the solution is to initialize the database handles in only one of the
modules. The SQLMOD command line qualifiers /NOINITIALIZE_HANDLES and
/INITIALIZE_HANDLES are used to specify whether or not alias definitions are coerced into alias
references.

11.1.19 New Attributes Saved by RMU/LOAD Incompatible
With Prior Versions

Bug 2676851

Oracle® Rdb for OpenVMS

11.1.18 ILINK−E−INVOVRINI Error on I64 271

To improve the behavior of unloading views, Oracle Rdb Release 7.1.2 changed the way view columns were
unloaded so that attributes for view computed columns, COMPUTED BY and AUTOMATIC columns were
saved. These new attributes are not accepted by prior releases of Oracle Rdb.

The following example shows the reported error trying to load a file from V7.1.2 under V7.1.0.4.

%RMU−F−NOTUNLFIL, Input file was not created by RMU UNLOAD
%RMU−I−DATRECSTO, 0 data records stored.
%RMU−F−FTL_LOAD, Fatal error for LOAD operation at 21−OCT−2003 16:34:54.20

You can workaround this problem by using the /RECORD_DEFINITION qualifier and specifying the
FORMAT=DELIMITED option. However, this technique does not support LIST OF BYTE VARYING
column unloading.

11.1.20 SYSTEM−F−INSFMEM Fatal Error With SHARED
MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED in
Galaxy Environment

When using the GALAXY SUPPORT IS ENABLED feature in an OpenVMS Galaxy environment, a
%SYSTEM−F−INSFMEM, insufficient dynamic memory error may be returned when mapping record caches
or opening the database. One source of this problem specific to a Galaxy configuration is running out of
Galaxy Shared Memory regions. For Galaxy systems, GLX_SHM_REG is the number of shared memory
region structures configured into the Galaxy Management Database (GMDB).

While the default value (for OpenVMS versions through at least V7.3−1) of 64 regions might be adequate for
some installations, sites using a larger number of databases or row caches when the SHARED MEMORY IS
SYSTEM or LARGE MEMORY IS ENABLED features are enabled may find the default insufficient.

If a %SYSTEM−F−INSFMEM, insufficient dynamic memory error is returned when mapping record caches or
opening databases, Oracle Corporation recommends that you increase the GLX_SHM_REG parameter by 2
times the sum of the number of row caches and number of databases that might be accessed in the Galaxy at
one time. As the Galaxy shared memory region structures are not very large, setting this parameter to a higher
than required value does not consume a significant amount of physical memory. It also may avoid a later
reboot of the Galaxy environment. This parameter must be set on all nodes in the Galaxy.

Galaxy Reboot Required

Changing the GLX_SHM_REG system parameter requires that the OpenVMS Galaxy
environment be booted from scratch. That is, all nodes in the Galaxy must be shut down
and then the Galaxy reformed by starting each instance.

11.1.21 Oracle Rdb and OpenVMS ODS−5 Volumes

OpenVMS Version 7.2 introduced an Extended File Specifications feature, which consists of two major
components:

A new, optional, volume structure, ODS−5, which provides support for file names that are longer and
have a greater range of legal characters than in previous versions of OpenVMS.

•

Oracle® Rdb for OpenVMS

11.1.20 SYSTEM−F−INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED in Galaxy Environment272

Support for "deep" directory trees.•

ODS−5 was introduced primarily to provide enhanced file sharing capabilities for users of Advanced Server
for OpenVMS 7.2 (formerly known as PATHWORKS for OpenVMS), as well as DCOM and JAVA
applications.

In some cases, Oracle Rdb performs its own file and directory name parsing and explicitly requires ODS−2
(the traditional OpenVMS volume structure) file and directory name conventions to be followed. Because of
this knowledge, Oracle does not support any Oracle Rdb database file components (including root files,
storage area files, after image journal files, record cache backing store files, database backup files, after image
journal backup files, etc.) that utilize any non−ODS−2 file naming features. For this reason, Oracle
recommends that Oracle Rdb database components not be located on ODS−5 volumes.

Oracle does support Oracle Rdb database file components on ODS−5 volumes provided that all of these files
and directories used by Oracle Rdb strictly follow the ODS−2 file and directory name conventions. In
particular, all file names must be specified entirely in uppercase and "special" characters in file or directory
names are forbidden.

11.1.22 Optimization of Check Constraints

Bug 1448422

When phrasing constraints using the "CHECK" syntax, a poorer strategy can be chosen by the optimizer than
when the same or similar constraint is phrased using referential integrity (PRIMARY and FOREIGN KEY)
constraints.

For example, I have two tables T1 and T2, both with one column, and I wish to ensure that all values in table
T1 exist in T2. Both tables have an index on the referenced field. I could use a PRIMARY KEY constraint on
T2 and a FOREIGN KEY constraint on T1.

SQL> alter table t2 alter column f2 primary key not deferrable;
SQL> alter table t1 alter column f1 references t2 not deferrable;

When deleting from the PRIMARY KEY table, Rdb will only check for rows in the FOREIGN KEY table
where the FOREIGN KEY has the deleted value. This can be seen as an index lookup on T1 in the retrieval
strategy.

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Index only retrieval of relation T1
 Index name I1 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_FOREIGN1 caused operation to fail

The failure of the constraint is not important. What is important is that Rdb efficiently detects that only those
rows in T1 with the same values as the deleted row in T2 can be affected.

It is necessary sometimes to define this type of relationship using CHECK constraints. This could be
necessary because the presence of NULL values in the table T2 precludes the definition of a primary key on
that table. This could be done with a CHECK constraint of the form:

SQL> alter table t1 alter column f1

Oracle® Rdb for OpenVMS

11.1.22 Optimization of Check Constraints 273

cont> check (f1 in (select * from t2)) not deferrable;
SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [0:0]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

The cross block is for the constraint evaluation. This retrieval strategy indicates that to evaluate the constraint,
the entire index on table T1 is being scanned and for each key, the entire index in table T2 is being scanned.
The behavior can be improved somewhat by using an equality join condition in the select clause of the
constraint:

SQL> alter table t1 alter column f1
cont> check (f1 in (select * from t2 where f2=f1)) not deferrable;

or:

SQL> alter table t1 alter column f1
cont> check (f1=(select * from t2 where f2=f1)) not deferrable;

In both cases the retrieval strategy will look like this:

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

While the entire T1 index is scanned, at least the value from T1 is used to perform an index lookup on T2.

These restrictions result from semantic differences in the behavior of the "IN" and "EXISTS" operators with
respect to null handling, and the complexity of dealing with non−equality join conditions.

To improve the performance of this type of integrity check on larger tables, it is possible to use a series of
triggers to perform the constraint check. The following triggers perform a similar check to the constraints
above.

SQL> create trigger t1_insert after insert on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> create trigger t1_update after update on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> ! A delete trigger is not needed on T1.

Oracle® Rdb for OpenVMS

11.1.22 Optimization of Check Constraints 274

SQL> create trigger t2_delete before delete on t2
cont> when (exists (select * from t1 where f1=f2))
cont> (error) for each row;
SQL> create trigger t2_modify after update on t2
cont> referencing old as t2o new as t2n
cont> when (exists (select * from t1 where f1=t2o.f2))
cont> (error) for each row;
SQL> ! An insert trigger is not needed on T2.

The strategy for a delete on T2 is now:

SQL> delete from t2 where f2=1;
Aggregate−F1 Index only retrieval of relation T1
 Index name I1 [1:1]
Temporary relation Get Retrieval by index of relation T2
 Index name I2 [1:1]
%RDB−E−TRIG_INV_UPD, invalid update; encountered error condition defined for
trigger
−RDMS−E−TRIG_ERROR, trigger T2_DELETE forced an error

The trigger strategy is the index only retrieval displayed first. You will note that the index on T1 is used to
examine only those rows that may be affected by the delete.

Care must be taken when using this workaround as there are semantic differences in the operation of the
triggers, the use of "IN" and "EXISTS", and the use of referential integrity constraints.

This workaround is useful where the form of the constraint is more complex, and cannot be phrased using
referential integrity constraints. For example, if the application is such that the value in table T1 may be
spaces or NULL to indicate the absence of a value, the above triggers could easily be modified to allow for
these semantics.

11.1.23 Carryover Locks and NOWAIT Transaction
Clarification

In NOWAIT transactions, the BLAST (Blocking AST) mechanism cannot be used. For the blocking user to
receive the BLAST signal, the requesting user must request the locked resource with WAIT (which a
NOWAIT transaction does not do). Oracle Rdb defines a resource called NOWAIT, which is used to indicate
that a NOWAIT transaction has been started. When a NOWAIT transaction starts, the user requests the
NOWAIT resource. All other database users hold a lock on the NOWAIT resource so that when the NOWAIT
transaction starts, all other users are notified with a NOWAIT BLAST. The BLAST causes blocking users to
release any carryover locks. There can be a delay before the transactions with carryover locks detect the
presence of the NOWAIT transaction and release their carryover locks. You can detect this condition by
examining the stall messages. If the "Waiting for NOWAIT signal (CW)" stall message appears frequently,
the application is probably experiencing a decrease in performance, and you should consider disabling the
carryover lock behavior.

11.1.24 Unexpected Results Occur During Read−Only
Transactions on a Hot Standby Database

When using Hot Standby, it is typical to use the standby database for reporting, simple queries, and other
read−only transactions. If you are performing these types of read−only transactions on a standby database, be

Oracle® Rdb for OpenVMS

11.1.23 Carryover Locks and NOWAIT Transaction Clarification 275

sure you can tolerate a READ COMMIT level of isolation. This is because the Hot Standby database might be
updated by another transaction before the read−only transaction finishes, and the data retrieved might not be
what you expected.

Because Hot Standby does not write to the snapshot files, the isolation level achieved on the standby database
for any read−only transaction is a READ COMMITED transaction. This means that nonrepeatable reads and
phantom reads are allowed during the read−only transaction:

Nonrepeatable read operations: Allows the return of different results within a single transaction when
an SQL operation reads the same row in a table twice. Nonrepeatable reads can occur when another
transaction modifies and commits a change to the row between transactions. Because the standby
database will update the data when it confirms a transaction has been committed, it is very possible to
see an SQL operation on a standby database return different results.

•

Phantom read operations: Allows the return of different results within a single transaction when an
SQL operation retrieves a range of data values (or similar data existence check) twice. Phantoms can
occur if another transaction inserted a new record and committed the insertion between executions of
the range retrieval. Again, because the standby database may do this, phantom reads are possible.

•

Thus, you cannot rely on any data read from the standby database to remain unchanged. Be sure your
read−only transactions can tolerate a READ COMMIT level of isolation before you implement procedures
that read and use data from a standby database.

11.1.25 Row Cache Not Allowed While Hot Standby
Replication is Active

The row cache feature may not be enabled on a hot standby database while replication is active. The hot
standby feature will not start if row cache is enabled.

This restriction exists because rows in the row cache are accessed via logical dbkeys. However, information
transferred to the standby database via the after image journal facility only contains physical dbkeys. Because
there is no way to maintain rows in the cache via the hot standby processing, the row cache must be disabled
when the standby database is open and replication is active.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the RMU Open command. To
open the hot standby database prior to starting replication, use the ROW_CACHE=DISABLED qualifier on
the RMU Open command.

11.1.26 Excessive Process Page Faults and Other
Performance Considerations During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process performance. One factor contributing
to Oracle Rdb process page faulting is sorting operations. Common causes of sorts include the SQL GROUP
BY, ORDER BY, UNION, and DISTINCT clauses specified for a query, and index creation operations.
Defining the logical name RDMS$DEBUG_FLAGS to "RS" can help determine when Oracle Rdb sort
operations are occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the Oracle Rdb images and does not
generally call the routines in the OpenVMS run−time library. A copy of the SORT32 code is used to provide
stability between versions of Oracle Rdb and OpenVMS and because Oracle Rdb calls the sort routines from

Oracle® Rdb for OpenVMS

11.1.25 Row Cache Not Allowed While Hot Standby Replication is Active 276

executive processor mode which is difficult to do using the SORT32 shareable image. SQL IMPORT and
RMU Load operations do, however, call the OpenVMS SORT run−time library.

At the beginning of a sort operation, the SORT code allocates memory for working space. The SORT code
uses this space for buffers, in−memory copies of the data, and sorting trees.

SORT does not directly consider the processes quotas or parameters when allocating memory. The effects of
WSQUOTA and WSEXTENT are indirect. At the beginning of each sort operation, the SORT code attempts
to adjust the process working set to the maximum possible size using the $ADJWSL system service
specifying a requested working set limit of %X7FFFFFFF pages (the maximum possible). SORT then uses a
value of 75% of the returned working set for virtual memory scratch space. The scratch space is then
initialized and the sort begins.

The initialization of the scratch space generally causes page faults to access the pages newly added to the
working set. Pages that were in the working set already may be faulted out as the new pages are faulted in.
Once the sort operation completes and SORT returns back to Oracle Rdb, the pages that may have been
faulted out of the working set are likely to be faulted back into the working set.

When a process working set is limited by the working set quota (WSQUOTA) parameter and the working set
extent (WSEXTENT) parameter is a much larger value, the first call to the sort routines can cause many page
faults as the working set grows. Using a value of WSEXTENT that is closer to WSQUOTA can help reduce
the impact of this case.

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL_MWSEXTENT equal to the
WSMAX parameter. This means that all processes on the system end up with WSEXTENT the same as
WSMAX. Since that might be quite high, sorting might result in excessive page faulting. You may want to
explicitly set PQL_MWSEXTENT to a lower value if this is the case on your system.

Sort work files are another factor to consider when tuning for Oracle Rdb sort operations. When the operation
can not be done in the available memory, SORT uses temporary disk files to hold the data as it is being sorted.
The Oracle Rdb7 Guide to Database Performance and Tuning contains more detailed information about sort
work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work files sort is to use if work
files are required. The default is 2 and the maximum number is 36. The work files can be individually
controlled by the SORTWORKn logical names (where n ranges from "0" through "Z"). You can increase the
efficiency of sort operations by assigning the location of the temporary sort work files to different disks.
These assignments are made by using up to 36 logical names, "SORTWORK0" through "SORTWORKZ".

Normally, SORT places work files in the your SYS$SCRATCH directory. By default, SYS$SCRATCH is the
same device and directory as the SYS$LOGIN location. Spreading the I/O load over multiple disks and/or
controllers improves efficiency as well as performance by taking advantage of more system resources and
helps prevent disk I/O bottlenecks. Specifying that a your work files reside on separate disks permits overlap
of the SORT read/write cycle. You may also encounter cases where insufficient space exists on the
SYS$SCRATCH disk device (for example, while Oracle Rdb builds indexes for a very large table). Using the
"SORTWORK0" through "SORTWORKZ" logical names can help you avoid this problem.

Note that SORT uses the work files for different sorted runs, and then merges the sorted runs into larger
groups. If the source data is mostly sorted, then not every sort work file may need to be accessed. This is a
possible source of confusion because even with 36 sort work files, it is possible to exceed the capacity of the
first SORT file device and the sort operation fails never having accessed the remaining 35 sort work files.

Oracle® Rdb for OpenVMS

11.1.25 Row Cache Not Allowed While Hot Standby Replication is Active 277

At this time, more than 10 sort work files will only be used by the Oracle Rdb sort interface as used by the
CREATE INDEX, ALTER INDEX and the clauses UNION DISTINCT, ORDER BY, GROUP BY and
SELECT DISTINCT. The RMU and SQL IMPORT interfaces use the OpenVMS SORT interface which does
not currently support more than 10 sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE do not affect or
control the operation of sort. These logical names are used to control other temporary space allocation within
Oracle Rdb.

11.1.27 Control of Sort Work Memory Allocation

Oracle Rdb uses a built−in SORT32 package to perform many sort operations. Sometimes, these sorts exhibit
a significant performance problem when initializing work memory to be used for the sort. This behavior can
be experienced, for example, when a very large sort cardinality is estimated, but the actual sort cardinality is
small.

In rare cases, it may be desirable to artificially limit the sort package's use of work memory. Two logicals
have been created to allow this control. In general, there should be no need to use either of these logicals and
misuse of them can significantly impact sort performance. Oracle recommends that these logicals be used
carefully and sparingly.

The logical names are:

Table 11−1 Sort Memory Logicals

Logical Definition

RDMS$BIND_SORT_MEMORY_WS_FACTOR

Specifies a percentage of the process's working set limit
to be used when allocating sort memory for the built−in
SORT32 package. If not defined, the default value is 75
(representing 75%), the maximum value is 75
(representing 75%), and the minimum value is 2
(representing 2%). Processes with vary large working set
limits can sometimes experience significant page faulting
and CPU consumption while initializing sort memory.
This logical name can restrict the sort work memory to a
percentage of the processes maximum working set.

RDMS$BIND_SORT_MEMORY_MAX_BYTES

Specifies an absolute limit to be used when allocating
sort memory for the built−in SORT32 package. If not
defined, the default value is unlimited (up to 1GB), the
maximum value is 2147483647 and the minimum value
is 32768.

11.1.28 The Halloween Problem

When a cursor is processing rows selected from a table, it is possible that another separate query can interfere
with the retrieval of the cursor by modifying the index columns key values used by the cursor.

Oracle® Rdb for OpenVMS

11.1.27 Control of Sort Work Memory Allocation 278

For instance, if a cursor selects all EMPLOYEES with LAST_NAME >= 'M', it is likely that the query will
use the sorted index on LAST_NAME to retrieve the rows for the cursor. If an update occurs during the
processing of the cursor which changes the LAST_NAME of an employee from "Mason" to "Rickard", then it
is possible that that employee row will be processed twice. First when it is fetched with name "Mason", and
then later when it is accessed by the new name "Rickard".

The Halloween problem is a well known problem in relational databases. Access strategies which optimize the
I/O requirements, such as Index Retrieval, can be subject to this problem. Interference from queries by other
sessions are avoided by locking and are controlled by the ISOLATION LEVEL options in SQL, or the
CONCURRENCY/CONSISTENCY options in RDO/RDML.

Oracle Rdb avoids this problem if it knows that the cursors subject table will be updated. For example, if the
SQL syntax UPDATE ... WHERE CURRENT OF is used to perform updates of target rows, or the
RDO/RDML MODIFY statement uses the context variable for the stream. Then the optimizer will choose an
alternate access strategy if an update can occur which may cause the Halloween problem. This can be seen in
the access strategy in Example 2−2 as a "Temporary relation" being created to hold the result of the cursor
query.

When you use interactive or dynamic SQL, the UPDATE ... WHERE CURRENT OF or DELETE ... WHERE
CURRENT OF statements will not be seen until after the cursor is declared and opened. In these
environments, you must use the FOR UPDATE clause to specify that columns selected by the cursor will be
updated during cursor processing. This is an indication to the Rdb optimizer so that it protects against the
Halloween problem in this case. This is shown in Example 2−1 and Example 2−2.

The following example shows that the EMP_LAST_NAME index is used for retrieval. Any update performed
will possibly be subject to the Halloween problem.

SQL> set flags 'strategy';
SQL> declare emp cursor for
cont> select * from employees where last_name >= 'M' order by last_name;
SQL> open emp;
Conjunct Get Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp;

The following example shows that the query specifies that the column LAST_NAME will be updated by
some later query. Now the optimizer protects the EMP_LAST_NAME index used for retrieval by using a
"Temporary Relation" to hold the query result set. Any update performed on LAST_NAME will now avoid
the Halloween problem.

SQL> set flags 'strategy';
SQL> declare emp2 cursor for
cont> select * from employees where last_name >= 'M'
cont> order by last_name for update of last_name;
SQL> open emp2;
Temporary relation Conjunct Get
Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp2;

When you use the SQL precompiler, or the SQL module language compiler it can be determined from usage
that the cursor context will possibly be updated during the processing of the cursor because all cursor related
statements are present within the module. This is also true for the RDML/RDBPRE precompilers when you
use the DECLARE_STREAM and START_STREAM statements and use the same stream context to perform

Oracle® Rdb for OpenVMS

11.1.27 Control of Sort Work Memory Allocation 279

all MODIFY and ERASE statements.

The point to note here is that the protection takes place during the open of the SQL cursor (or RDO stream),
not during the subsequent UPDATE or DELETE.

If you execute a separate UPDATE query which modifies rows being fetched from the cursor then the actual
rows fetched will depend upon the access strategy chosen by the Rdb optimizer. As the query is separate from
the cursors query (i.e. doesn't reference the cursor context), then the optimizer does not know that the cursor
selected rows are potentially updated and so cannot perform the normal protection against the Halloween
problem.

Oracle® Rdb for OpenVMS

11.1.27 Control of Sort Work Memory Allocation 280

11.2 SQL Known Problems and Restrictions
This section describes known problems and restrictions for the SQL interface.

11.2.1 SET FLAGS CRONO_FLAG Removed

The SET FLAGS statement and RDMS$SET_FLAGS logical name no longer accept the obsolete keyword
CRONO_FLAG. This keyword has been removed. Please update all scripts and applications to use the
keyword CHRONO_FLAG.

11.2.2 Interchange File (RBR) Created by Oracle Rdb
Release 7.2 Not Compatible With Previous Releases

To support the large number of new database attributes and objects, the protocol used by SQL EXPORT and
SQL IMPORT has been enhanced to support more protocol types. Therefore, this format of the Oracle Rdb
release 7.2 interchange files can no longer be read by older versions of Oracle Rdb.

Oracle Rdb continues to provide upward compatibility for interchange files generated by older versions.

Oracle Rdb has never supported backward compatibility, however, it was sometimes possible to use an
interchange file with an older version of IMPORT. However, this protocol change will no longer permit this
usage.

11.2.3 Single Statement LOCK TABLE is Not Supported for
SQL Module Language and SQL Precompiler

The new LOCK TABLE statement is not currently supported as a single statement within the module
language or embedded SQL language compiler.

Instead you must enclose the statement in a compound statement. That is, use BEGIN... END around the
statement as shown in the following example. This format provides all the syntax and flexibility of LOCK
TABLE.

This restriction does not apply to interactive or dynamic SQL.

The following extract from the module language listing file shows the reported error if you use LOCK
TABLE as a single statement procedure. The other procedure in the same module is acceptable because it uses
a compound statement that contains the LOCK TABLE statement.

1 MODULE sample_test
2 LANGUAGE C
3 PARAMETER COLONS
4
5 DECLARE ALIAS FILENAME 'mf_personnel'
6
7 PROCEDURE a (SQLCODE);
8 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
%SQL−F−WISH_LIST, (1) Feature not yet implemented − LOCK TABLE requires compound
statement

11.2 SQL Known Problems and Restrictions 281

9
10 PROCEDURE b (SQLCODE);
11 BEGIN
12 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
13 END;

To workaround this problem of using LOCK TABLE for SQL module language or embedded SQL
application, use a compound statement in an EXEC SQL statement.

11.2.4 Multistatement or Stored Procedures May Cause
Hangs

Long−running multistatement or stored procedures can cause other users in the database to hang if the
procedures obtain resources needed by those other users. Some resources obtained by the execution of a
multistatement or stored procedure are not released until the multistatement or stored procedure finishes.
Thus, any−long running multistatement or stored procedure can cause other processes to hang. This problem
can be encountered even if the statement contains SQL COMMIT or ROLLBACK statements.

The following example demonstrates the problem. The first session enters an endless loop; the second session
attempts to backup the database but hangs forever.

Session 1:

SQL> attach 'filename MF_PERSONNEL';
SQL> create function LIB$WAIT (in real by reference)
cont> returns integer;
cont> external name LIB$WAIT location 'SYS$SHARE:LIBRTL.EXE'
cont> language general general parameter style variant;
SQL> commit;
 .
 .
 .
$ SQL
SQL> attach 'filename MF_PERSONNEL';
SQL> begin
cont> declare :LAST_NAME LAST_NAME_DOM;
cont> declare :WAIT_STATUS integer;
cont> loop
cont> select LAST_NAME into :LAST_NAME
cont> from EMPLOYEES where EMPLOYEE_ID = '00164';
cont> rollback;
cont> set :WAIT_STATUS = LIBWAIT (5.0);
cont> set transaction read only;
cont> end loop;
cont> end;

Session 2:

$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session, you can see that the backup process is waiting for a lock
held in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL
 .
 .
 .

Oracle® Rdb for OpenVMS

11.2.4 Multistatement or Stored Procedures May Cause Hangs 282

Resource: nowait signal

ProcessID Process Name Lock ID System ID Requested Granted
−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−− −−−−−−−−− −−−−−−−
20204383 RMU BACKUP..... 5600A476 00010001 CW NL
2020437B SQL............ 3B00A35C 00010001 PR PR

There is no workaround for this restriction. When the multistatement or stored procedure finishes execution,
the resources needed by other processes are released.

11.2.5 Use of Oracle Rdb from Shareable Images

If code in the image initialization routine of a shareable image makes any calls into Oracle Rdb, through SQL
or any other means, access violations or other unexpected behavior may occur if Oracle Rdb images have not
had a chance to do their own initialization.

To avoid this problem, applications must take one of the following steps:

Do not make Oracle Rdb calls from the initialization routines of shareable images.•
Link in such a way that the RDBSHR.EXE image initializes first. You can do this by placing the
reference to RDBSHR.EXE and any other Oracle Rdb shareable images last in the linker options file.

•

This is not a bug; it is a restriction resulting from the way OpenVMS image activation works.

Oracle® Rdb for OpenVMS

11.2.5 Use of Oracle Rdb from Shareable Images 283

11.3 Oracle RMU Known Problems and
Restrictions
This section describes known problems and restrictions for the RMU interface.

11.3.1 RMU Convert Fails When Maximum Relation ID is
Exceeded

If, when relation IDs are assigned to new system tables during an RMU Convert to a V7.2 database, the
maximum relation ID of 8192 allowed by Oracle Rdb is exceeded, the fatal error
%RMU−F−RELMAXIDBAD is displayed and the database is rolled back to the prior database version.
Contact your Oracle support representative if you get this error. Note that when the database is rolled back,
the fatal error %RMU−F−CVTROLSUC is displayed to indicate that the rollback was successful but caused
by the detection of a fatal error and not requested by the user.

This condition only occurs if there are an extremely large number of tables defined in the database or if a large
number of tables were defined but have subsequently been deleted.

The following example shows both the %RMU−F−RELMAXIDBAD error message if the allowed database
relation ID maximum of 8192 is exceeded and the %RMU−F−CVTROLSUC error message when the
database has been rolled back to V7.0 since it cannot be converted to V7.2:

$rmu/convert mf_personnel
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.2
Are you satisfied with your backup of
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
 any associated .aij files [N]? Y
 %RMU−I−LOGCONVRT, database root converted to current structure level
 %RMU−F−RELMAXIDBAD, ROLLING BACK CONVERSION − Relation ID exceeds maximum
 8192 for system table RDB$RELATIONS
 %RMU−F−CVTROLSUC, CONVERT rolled−back for
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.0

The following example shows the normal case when the maximum allowed relation ID is not exceeded:

$rmu/convert mf_personnel
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.2
Are you satisfied with your backup of
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
 any associated .aij files [N]? Y
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−S−CVTDBSUC, database DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
 successfully converted from version V7.0 to V7.2
%RMU−I−CVTCOMSUC, CONVERT committed for
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.2

11.3.2 RMU Unload /After_Journal Requires Accurate AIP
Logical Area Information

11.3 Oracle RMU Known Problems and Restrictions 284

The RMU Unload /After_Journal command uses the on−disk area inventory pages (AIPs) to determine the
appropriate type of each logical area when reconstructing logical dbkeys for records stored in mixed−format
storage areas. However, the logical area type information in the AIP is generally unknown for logical areas
created prior to Oracle Rdb release 7.0.1. If the RMU Unload /After_Journal command cannot determine the
logical area type for one or more AIP entries, a warning message is displayed for each such area and may
ultimately return logical dbkeys with a 0 (zero) area number for records stored in mixed−format storage areas.

In order to update the on−disk logical area type in the AIP, the RMU Repair utility must be used. The
INITIALIZE=LAREA_PARAMETERS=optionfile qualifier option file can be used with the TYPE qualifier.
For example, to repair the EMPLOYEES table of the MF_PERSONNEL database, you would create an
options file that contains the following line:

EMPLOYEES /TYPE=TABLE

For partitioned logical areas, the AREA=name qualifier can be used to identify the specific storage areas that
are to be updated. For example, to repair the EMPLOYEES table of the MF_PERSONNEL database for the
EMPID_OVER storage area only, you would create an options file that contains the following line:

EMPLOYEES /AREA=EMPID_OVER /TYPE=TABLE

The TYPE qualifier specifies the type of a logical area. The following keywords are allowed:

TABLE
Specifies that the logical area is a data table. This would be a table created using the SQL CREATE
TABLE syntax.

•

B−TREE
Specifies that the logical area is a B−tree index. This would be an index created using the SQL
CREATE INDEX TYPE IS SORTED syntax.

•

HASH
Specifies that the logical area is a hash index. This would be an index created using the SQL
CREATE INDEX TYPE IS HASHED syntax.

•

SYSTEM
Specifies that the logical area is a system record that is used to identify hash buckets. Users cannot
explicitly create these types of logical areas.

Note

This type should NOT be used for the RDB$SYSTEM logical areas. This type does
NOT identify system relations.

•

BLOB
Specifies that the logical area is a BLOB repository.

•

There is no explicit error checking of the type specified for a logical area. However, an incorrect type may
cause the RMU Unload /After_Journal command to be unable to correctly return valid, logical dbkeys.

11.3.3 Do Not Use HYPERSORT with RMU Optimize
After_Journal Command

Oracle® Rdb for OpenVMS

11.3.3 Do Not Use HYPERSORT with RMU Optimize After_Journal Command 285

The OpenVMS Alpha V7.1 operating system introduced the high−performance Sort/Merge utility (also
known as HYPERSORT). This utility takes advantage of the OpenVMS Alpha architecture to provide better
performance for most sort and merge operations.

The high−performance Sort/Merge utility supports a subset of the SOR routines. Unfortunately, the
high−performance Sort/Merge utility does not support several of the interfaces used by the RMU Optimize
After_Journal command. In addition, the high−performance Sort/Merge utility reports no error or warning
when being called with the unsupported options used by the RMU Optimize After_Journal command.

Because of this, the use of the high−performance Sort/Merge utility is not supported for the RMU Optimize
After_Journal command. Do not define the logical name SORTSHR to reference HYPERSORT.EXE.

11.3.4 Changes in EXCLUDE and INCLUDE Qualifiers for
RMU Backup

The RMU Backup command no longer accepts both the Include and Exclude qualifiers in the same command.
This change removes the confusion over exactly what gets backed up when Include and Exclude are specified
on the same line, but does not diminish the capabilities of the RMU Backup command.

To explicitly exclude some storage areas from a backup, use the Exclude qualifier to name the storage areas to
be excluded. This causes all storage areas to be backed up except for those named by the Exclude qualifier.

Similarly, the Include qualifier causes only those storage areas named by the qualifier to be backed up. Any
storage area not named by the Include qualifier is not backed up. The Noread_only and Noworm qualifiers
continue to cause read−only storage areas and WORM storage areas to be omitted from the backup even if
these areas are explicitly listed by the Include qualifier.

Another related change is in the behavior of EXCLUDE=*. In previous versions, EXCLUDE=* caused all
storage areas to be backed up. Beginning with V7.1, EXCLUDE=* causes only a root backup to be done. A
backup created by using EXCLUDE=* can be used only by the RMU Restore Only_Root command.

11.3.5 RMU Backup Operations Should Use Only One Type
of Tape Drive

When using more than one tape drive for an RMU Backup command, all of the tape drives must be of the
same type (for example, all the tape drives must be TA90s or TZ87s or TK50s). Using different tape drive
types (for example, one TK50 and one TA90) for a single database backup operation may make database
restoration difficult or impossible.

Oracle RMU attempts to prevent using different tape drive densities during a backup operation, but is not able
to detect all invalid cases and expects that all tape drives for a backup are of the same type.

As long as all of the tapes used during a backup operation can be read by the same type of tape drive during a
restore operation, the backup is likely valid. This may be the case, for example, when using a TA90 and a
TA90E.

Oracle Corporation recommends that, on a regular basis, you test your backup and recovery procedures and
environment using a test system. You should restore the database and then recover using AIJs to simulate
failure recovery of the production system.

Oracle® Rdb for OpenVMS

11.3.4 Changes in EXCLUDE and INCLUDE Qualifiers for RMU Backup 286

Consult the Oracle Rdb7 Guide to Database Maintenance, the Oracle Rdb7 Guide to Database Design and
Definition, and the Oracle RMU Reference Manual for additional information about Oracle Rdb backup and
restore operations.

11.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST
Errors

RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when verifying storage areas.
These errors indicate that the Space Area Management (SPAM) page fullness threshold for a particular data
page does not match the actual space usage on the data page. For a further discussion of SPAM pages, consult
the Oracle Rdb7 Guide to Database Maintenance.

In general, these errors will not cause any adverse affect on the operation of the database. There is potential
for space on the data page to not be totally utilized, or for a small amount of extra I/O to be expended when
searching for space in which to store new rows. But unless there are many of these errors then the impact
should be negligible.

It is possible for these inconsistencies to be introduced by errors in Oracle Rdb. When those cases are
discovered, Oracle Rdb is corrected to prevent the introduction of the inconsistencies. It is also possible for
these errors to be introduced during the normal operation of Oracle Rdb. The following scenario can leave the
SPAM pages inconsistent:

A process inserts a row on a page, and updates the threshold entry on the corresponding SPAM page
to reflect the new space utilization of the data page. The data page and SPAM pages are not flushed to
disk.

1.

Another process notifies the first process that it would like to access the SPAM page being held by the
process. The first process flushes the SPAM page changes to disk and releases the page. Note that it
has not flushed the data page.

2.

The first process then terminates abnormally (for example, from the DCL STOP/IDENTIFICATION
command). Since that process never flushed the data page to disk, it never wrote the changes to the
Recovery Unit Journal (RUJ) file. Since there were no changes in the RUJ file for that data page then
the Database Recovery (DBR) process did not need to roll back any changes to the page. The SPAM
page retains the threshold update change made above even though the data page was never flushed to
disk.

3.

While it would be possible to create mechanisms to ensure that SPAM pages do not become out of synch with
their corresponding data pages, the performance impact would not be trivial. Since these errors are relatively
rare and the impact is not significant, then the introduction of these errors is considered to be part of the
normal operation of Oracle Rdb. If it can be proven that the errors are not due to the scenario above, then
Oracle Product Support should be contacted.

PGSPAMENT and PGSPMCLST errors may be corrected by doing any one of the following operations:

Recreate the database by performing:
SQL EXPORT1.
SQL DROP DATABASE2.
SQL IMPORT3.

•

Recreate the database by performing:
RMU/BACKUP1.
SQL DROP DATABASE2.

•

Oracle® Rdb for OpenVMS

11.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors 287

RMU/RESTORE3.
Repair the SPAM pages by using the RMU/REPAIR command. Note that the RMU/REPAIR
command does not write its changes to an after−image journal (AIJ) file. Therefore, Oracle
recommends that a full database backup be performed immediately after using the RMU/REPAIR
command.

•

Oracle® Rdb for OpenVMS

11.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors 288

11.4 Known Problems and Restrictions in All
Interfaces for Release 7.0 and Earlier
The following problems and restrictions from release 7.0 and earlier still exist.

11.4.1 Converting Single−File Databases

Because of a substantial increase in the database root file information for V7.0, you should ensure that
you have adequate disk space before you use the RMU Convert command with single−file databases
and V7.0 or higher.

The size of the database root file of any given database increases a maximum of about 600 disk
blocks. The actual increase depends mostly on the maximum number of users specified for the
database.

11.4.2 Row Caches and Exclusive Access

If a table has a row−level cache defined for it, the Row Cache Server (RCS) may acquire a shared
lock on the table and prevent any other user from acquiring a Protective or Exclusive lock on that
table.

11.4.3 Exclusive Access Transactions May Deadlock
with RCS Process

If a table is frequently accessed by long running transactions that request READ/WRITE access
reserving the table for EXCLUSIVE WRITE and if the table has one or more indexes, you may
experience deadlocks between the user process and the Row Cache Server (RCS) process.

There are at least three suggested workarounds to this problem:

Reserve the table for SHARED WRITE♦
Close the database and disable row cache for the duration of the exclusive transaction♦
Change the checkpoint interval for the RCS process to a time longer than the time required to
complete the batch job and then trigger a checkpoint just before the batch job starts. Set the
interval back to a smaller interval after the checkpoint completes.

♦

11.4.4 Strict Partitioning May Scan Extra Partitions

When you use a WHERE clause with the less than (<) or greater than (>) operator and a value that is
the same as the boundary value of a storage map, Oracle Rdb scans extra partitions. A boundary value
is a value specified in the WITH LIMIT OF clause. The following example illustrates the behavior:

SQL> create table T1
cont> (id integer
cont> ,last_name char(12)
cont> ,first_name char(12)
cont>);
SQL> create storage map M for T1

11.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier 289

cont> partitioning not updatable
cont> store using (id)
cont> in EMPIDS_LOW with limit of (200)
cont> in EMPIDS_MID with limit of (400)
cont> otherwise in EMPIDS_OVER;
SQL> insert into T1 values (150,'Boney','MaryJean');
1 row inserted
SQL> insert into T1 values (350,'Morley','Steven');
1 row inserted
SQL> insert into T1 values (300,'Martinez','Nancy');
1 row inserted
SQL> insert into T1 values (450,'Gentile','Russ');
1 row inserted
SQL>
SQL> set flags 'EXECUTION(100),STRATEGY,DETAIL(2),INDEX_PARTITIONS';
SQL>
SQL> select * from T1 where ID > 400;
~S#0001
Tables:
 0 = T1
Conjunct: 0.ID > 400
Get Retrieval sequentially of relation 0:T1 (partitioned scan#1)
~E#0001.1: Strict Partitioning using 2 areas
 partition 2 (larea=60) "EMPIDS_MID"
 partition 3 (larea=61) "EMPIDS_OVER" otherwise
 ID LAST_NAME FIRST_NAME
 450 Gentile Russ
1 row selected
SQL>

In this example, partition 2 does not need to be scanned but is still accessed due to the structure of the
generated key values. This does not affect the correctness of the result. Users can avoid the extra scan
by using values other than the boundary values.

11.4.5 Restriction When Adding Storage Areas with
Users Attached to Database

If you try to interactively add a new storage area where the page size is less than the smallest existing
page size and the database has been manually opened or users are active, the add operation fails with
the following errors:

%RDMS−F−NOEUACCESS, unable to acquire exclusive access to database

or

%RDB−F−SYS_REQUEST, error from system services request
−RDMS−F−FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1
−SYSTEM−W−ACCONFLICT, file access conflict

You can make this change only when no users are attached to the database and, if the database is set
to OPEN IS MANUAL, the database is closed. Several internal Oracle Rdb data structures are based
on the minimum page size and these structures cannot be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AIJ, any recovery scenario fails.
Note also that if you use .aij files, you must backup the database and restart after−image journaling
because this change invalidates the current AIJ recovery.

Oracle® Rdb for OpenVMS

11.4.5 Restriction When Adding Storage Areas with Users Attached to Database 290

11.4.6 Multiblock Page Writes May Require Restore
Operation

If a node fails while a multiblock page is being written to disk, the page in the disk becomes
inconsistent, and is detected immediately during failover. (Failover is the recovery of an application
by restarting it on another computer.) The problem is rare, and occurs because only single−block I/O
operations are guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area−level restore operation. Database integrity is not compromised, but the
affected area is not available until the restore operation completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock atomic write
operations. Cluster failovers will automatically cause the recovery of multiblock pages, and no
manual intervention will be required.

11.4.7 Replication Option Copy Processes Do Not
Process Database Pages Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly Data Distributor)
begins running after an application has begun modifying the database, the copy processes catch up to
the application and are not able to process database pages that are logically ahead of the application in
the RDB$CHANGES system relation. The copy processes all align waiting for the same database
page and do not move on until the application has released it. The performance of each copy process
degrades because it is being paced by the application.

When a copy process completes updates to its respective remote database, it updates the
RDB$TRANSFERS system relation and then tries to delete any RDB$CHANGES rows not needed
by any transfers. During this process, the RDB$CHANGES table cannot be updated by any
application process, holding up any database updates until the deletion process is complete. The
application stalls while waiting for the RDB$CHANGES table. The resulting contention for
RDB$CHANGES SPAM pages and data pages severely impacts performance throughput, requiring
user intervention with normal processing.

This is a known restriction in V4.0 and higher. Oracle Rdb uses page locks as latches. These latches
are held only for the duration of an action on the page and not to the end of transaction. The page
locks also have blocking asynchronous system traps (ASTs) associated with them. Therefore,
whenever a process requests a page lock, the process holding that page lock is sent a blocking AST
(BLAST) by OpenVMS. The process that receives such a blocking AST queues the fact that the page
lock should be released as soon as possible. However, the page lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time. An Oracle Rdb verb is an
Oracle Rdb query that executes atomically, within a transaction. Therefore, verbs that require the scan
of a large table, for example, can be quite long. An updating application does not release page locks
until its verb has completed.

The reasons for holding on to the page locks until the end of the verb are fundamental to the database
management system.

Oracle® Rdb for OpenVMS

11.4.6 Multiblock Page Writes May Require Restore Operation 291

11.5 SQL Known Problems and Restrictions for
Oracle Rdb Release 7.0 and Earlier
The following problems and restrictions from Oracle Rdb Release 7.0 and earlier still exist.

11.5.1 ARITH_EXCEPT or Incorrect Results Using LIKE
IGNORE CASE

When you use LIKE...IGNORE CASE, programs linked under Oracle Rdb V4.2 and V5.1, but run
under higher versions of Oracle Rdb, may result in incorrect results or %RDB−E−ARITH_EXCEPT
exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE or recompile and relink under a
higher version (V6.0 or higher.)

11.5.2 Different Methods of Limiting Returned Rows
from Queries

You can establish the query governor for rows returned from a query by using either the SQL SET
QUERY LIMIT statement or a logical name. This note describes the differences between the two
mechanisms.

If you define the RDMS$BIND_QG_REC_LIMIT logical name to a small value, the query often fails
with no rows returned regardless of the value assigned to the logical. The following example
demonstrates setting the limit to 10 rows and the resulting failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10
$ SQL$
SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
%RDB−F−EXQUOTA, Oracle Rdb runtime quota exceeded
−RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can process the SELECT
statement. In this example, interactive SQL loads its metadata cache to allow it to check that the
column EMPLOYEE_ID really exists for the table. The queries on the Oracle Rdb system relations
RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it. Raising the limit to a
number less than 100 (the cardinality of EMPLOYEES) but more than the number of columns in
EMPLOYEES (that is, the number of rows to read from the RDB$RELATION_FIELDS system
relation) is sufficient to read each column definition.

To see an indication of the queries executed against the system relations, define the
RDMS$DEBUG_FLAGS logical name as "S" or "B".

If you set the row limit using the SQL SET QUERY statement and run the same query, it returns the
number of rows specified by the SQL SET QUERY statement before failing:

11.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier 292

 SQL> ATTACH 'FILENAME MF_PERSONNEL';
 SQL> SET QUERY LIMIT ROWS 10;
 SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
 EMPLOYEE_ID
 00164
 00165
 .
 .
 .
 00173
 %RDB−E−EXQUOTA, Oracle Rdb runtime quota exceeded
 −RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows. Therefore, the queries
used to load the metadata cache are not restricted in any way.

Like the SET QUERY LIMIT statement, the SQL precompiler and module processor command line
qualifiers (QUERY_MAX_ROWS and SQLOPTIONS=QUERY_MAX_ROWS) only limit user
queries.

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT. They may limit more queries than are obvious. This is important
when using 4GL tools, the SQL precompiler, the SQL module processor, and other interfaces that
read the Oracle Rdb system relations as part of query processing.

11.5.3 Suggestions for Optimal Use of SHARED DATA
DEFINITION Clause for Parallel Index Creation

The CREATE INDEX process involves the following steps:

Process the metadata.1.
Lock the index name.
Because new metadata (which includes the index name) is not written to disk until the end of
the index process, Oracle Rdb must ensure index name uniqueness across the database during
this time by taking a special lock on the provided index name.

2.

Read the table for sorting by selected index columns and ordering.3.
Sort the key data.4.
Build the index (includes partitioning across storage areas).5.
Write new metadata to disk.6.

Step 6 is the point of conflict with other index definers because the system relation and indexes are
locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING table_name FOR
SHARED DATA DEFINITION clause of the SET TRANSACTION statement. For optimal usage of
this capability, Oracle Rdb suggests the following guidelines:

You should commit the transaction immediately after the CREATE INDEX statement so that
locks on the table are released. This avoids lock conflicts with other index definers and
improves overall concurrency.

♦

By assigning the location of the temporary sort work files SORTWORK0, SORTWORK1, ...
, SORTWORK9 to different disks for each parallel process that issues the SHARED DATA
DEFINITION statement, you can increase the efficiency of sort operations. This minimizes

♦

Oracle® Rdb for OpenVMS

11.5.3 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation293

any possible disk I/O bottlenecks and allows overlap of the SORT read/write cycle.
If possible, enable global buffers and specify a buffer number large enough to hold a
sufficient amount of table data. However, do not define global buffers larger than the
available system physical memory. Global buffers allow sharing of database pages and thus
result in disk I/O savings. That is, pages are read from disk by one of the processes and then
shared by the other index definers for the same table, reducing the I/O load on the table.

♦

If global buffers are not used, ensure that enough local buffers exist to keep much of the index
cached (use the RDM$BIND_BUFFERS logical name or the NUMBER OF BUFFERS IS
clause in SQL to change the number of buffers).

♦

To distribute the disk I/O load, store the storage areas for the indexes on separate disk drives.
Note that using the same storage area for multiple indexes results in contention during the
index creation (Step 5) for SPAM pages.

♦

Consider placing the .ruj file for each parallel definer on its own disk or an infrequently used
disk.

♦

Even though snapshot I/O should be minimal, consider disabling snapshots during parallel
index creation.

♦

Refer to the Oracle Rdb7 Guide to Database Performance and Tuning to determine the
appropriate working set values for each process to minimize excessive paging activity. In
particular, avoid using working set parameters where the difference between WSQUOTA and
WSEXTENT is large. The SORT utility uses the difference between these two values to
allocate scratch virtual memory. A large difference (that is, the requested virtual memory
grossly exceeds the available physical memory) may lead to excessive page faulting.

♦

The performance benefits of using SHARED DATA DEFINITION can best be observed
when creating many indexes in parallel. The benefit is in the average elapsed time, not in
CPU or I/O usage. For example, when two indexes are created in parallel using the SHARED
DATA DEFINITION clause, the database must be attached twice, and the two attaches each
use separate system resources.

♦

Using the SHARED DATA DEFINITION clause on a single−file database or for indexes
defined in the RDB$SYSTEM storage area is not recommended.

♦

The following table displays the elapsed time benefit when creating multiple indexes in parallel with
the SHARED DATA DEFINITION clause. The table shows the elapsed time for ten parallel process
index creations (Index1, Index2, ... Index10) and one process with ten sequential index creations
(All10). In this example, global buffers are enabled and the number of buffers is 500. The longest
time for a parallel index creation is Index7 with an elapsed time of 00:02:34.64, compared to creating
ten indexes sequentially with an elapsed time of 00:03:26.66. The longest single parallel create index
elapsed time is shorter than the elapsed time of creating all ten of the indexes serially.

Table 11−2 Elapsed Time for Index Creations

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96

Index6 00:01:27.57

Index7 00:02:34.64

Index8 00:01:40.56

Oracle® Rdb for OpenVMS

11.5.3 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation294

Index9 00:01:34.43

Index10 00:01:47.44

All10 00:03:26.66

11.5.4 Side Effect When Calling Stored Routines

When calling a stored routine, you must not use the same routine to calculate argument values by a
stored function. For example, if the routine being called is also called by a stored function during the
calculation of an argument value, passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the calculation of the
arguments for another invocation of the stored procedure P:

SQL> create module M
cont> language SQL
cont>
cont> procedure P (in :a integer, in :b integer, out :c integer);
cont> begin
cont> set :c = :a + :b;
cont> end;
cont>
cont> function F () returns integer
cont> comment is 'expect F to always return 2';
cont> begin
cont> declare :b integer;
cont> call P (1, 1, :b);
cont> trace 'returning ', :b;
cont> return :b;
cont> end;
cont> end module;
SQL>
SQL> set flags 'TRACE';
SQL> begin
cont> declare :cc integer;
cont> call P (2, F(), :cc);
cont> trace 'Expected 4, got ', :cc;
cont> end;
~Xt: returning 2
~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written to the called routine's
parameter area before complex expression values are calculated. These calculations may (as in the
example) overwrite previously copied data.

The workaround is to assign the argument expression (in this example calling the stored function F) to
a temporary variable and pass this variable as the input for the routine. The following example shows
the workaround:

SQL> begin
cont> declare :bb, :cc integer;
cont> set :bb = F();
cont> call P (2, :bb, :cc);
cont> trace 'Expected 4, got ', :cc;
cont> end;
~Xt: returning 2

Oracle® Rdb for OpenVMS

11.5.4 Side Effect When Calling Stored Routines 295

~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb.

11.5.5 Considerations When Using Holdable Cursors

If your applications use holdable cursors, be aware that after a COMMIT or ROLLBACK statement is
executed, the result set selected by the cursor may not remain stable. That is, rows may be inserted,
updated, and deleted by other users because no locks are held on the rows selected by the holdable
cursor after a commit or rollback occurs. Moreover, depending on the access strategy, rows not yet
fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in a concurrent user
environment:

If the access strategy forces Oracle Rdb to take a data snapshot, the data read and cached may
be stale by the time the cursor fetches the data.
For example, user 1 opens a cursor and commits the transaction. User 2 deletes rows read by
user 1 (this is possible because the read locks are released). It is possible for user 1 to report
data now deleted and committed.

♦

If the access strategy uses indexes that allow duplicates, updates to the duplicates chain may
cause rows to be skipped, or even revisited.
Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the data that was
fetched. However, the duplicates chain could be revised by the time Oracle Rdb returns to
using it.

♦

Holdable cursors are a very powerful feature for read−only or predominantly read−only
environments. However, in concurrent update environments, the instability of the cursor may not be
acceptable. The stability of holdable cursors for update environments will be addressed in future
versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP to the value 1 to force all
hold cursors to fetch the result set into a cached data area. (The cached data area appears as a
"Temporary Relation" in the optimizer strategy displayed by the SET FLAGS 'STRATEGY'
statement or the RDMS$DEBUG_FLAGS "S" flag.) This logical name helps to stabilize the cursor to
some degree.

11.5.6 AIJSERVER Privileges

For security reasons, the AIJSERVER account ("RDMAIJSERVER") is created with only NETMBX
and TMPMBX privileges. These privileges are sufficient to start Hot Standby, in most cases.

However, for production Hot Standby systems, these privileges are not adequate to ensure continued
replication in all environments and workload situations. Therefore, Oracle recommends that the DBA
provide the following additional privileges for the AIJSERVER account:

ALTPRI − This privilege allows the AIJSERVER to adjust its own priority to ensure
adequate quorum (CPU utilization) to prompt message processing.

♦

PSWAPM − This privilege allows the AIJSERVER to enable and disable process swapping,
also necessary to ensure prompt message processing.

♦

Oracle® Rdb for OpenVMS

11.5.5 Considerations When Using Holdable Cursors 296

SETPRV − This privilege allows the AIJSERVER to temporarily set any additional privileges
it may need to access the standby database or its server processes.

♦

SYSPRV − This privilege allows the AIJSERVER to access the standby database rootfile, if
necessary.

♦

WORLD − This privilege allows the AIJSERVER to more accurately detect standby database
server process failure and handle network failure more reliably.

♦

| Contents

Oracle® Rdb for OpenVMS

11.5.5 Considerations When Using Holdable Cursors 297

	Table of Contents
	Oracle® Rdb for OpenVMS
	Release Notes
	July 2013
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Document Structure
	Chapter 1Installing Oracle Rdb Release 7.2.5.3
	1.1 Oracle Rdb on HP OpenVMS Industry Standard 64
	1.2 Requirements
	1.2.1 Ensure No Processes Have RDMSHRP Image Activated

	1.3 Intel Itanium Processor 9300 "Tukwila" Support
	1.4 Maximum OpenVMS Version Check
	1.5 Database Format Changed
	1.6 Using Databases from Releases Earlier than V7.0
	1.7 Invoking the VMSINSTAL Procedure
	1.8 Stopping the Installation
	1.9 After Installing Oracle Rdb
	1.10 VMS$MEM_RESIDENT_USER Rights Identifier Required
	1.11 Installation, Configuration, Migration, Upgrade Suggestions
	Chapter 2Software Errors Fixed in Oracle Rdb Release 7.2.5.3
	2.1 Software Errors Fixed That Apply to All Interfaces
	2.1.1 Corrupt SORTED RANKED Index After Row INSERT
	2.1.2 Node Failure May Cause DBRs to Hang
	2.1.3 Session Crash if Run Time Routine Native Compiler Enabled
	2.1.4 ACCVIO In COSI_MEM_GET_VM64_2
	2.1.5 Unexpected Loop During Query Optimization
	2.1.6 Unexpected Bugcheck During Query Execution at RDMS$$SET_USED_OR_DESCENDANTS
	2.1.7 Wrong Result When Constant Boolean Appears in Predicate
	2.1.8 Query With Zig-zag Match Strategy Returns Wrong Result
	2.1.9 Unexpected Bugcheck When Altering a LIST Storage Map
	2.1.10 Oracle Rdb Monitor Log File Shows Inconsistent PIDs When Accessing a Database From JAVA
	2.1.11 New Error Message - ABMCHNFUL

	2.2 SQL Errors Fixed
	2.2.1 Unexpected Support of NOT NULL Syntax for COMPUTED BY Columns
	2.2.2 Unexpected Behavior of SET DISPLAY CHARACTER SET Statement
	2.2.3 Unexpected Stall When Calling External Routines
	2.2.4 Unexpected Query Error COSI-F-INVCLADTY
	2.2.5 Unexpected BAD_REQ_HANDLE Reported During Query Compile
	2.2.6 Multiple Alias References Not Detected for Sequences
	2.2.7 Unexpected RDMS-E-SEQNEXTS Error Reported When GRANT or REVOKE is Used on View
	2.2.8 Unexpected SQL-F-BADCORATT Error Reported by IMPORT DATABASE
	2.2.9 Rows Returned in the Wrong Order From Sorted Tactic During Bitmapped Scan
	2.2.10 Unexpected RDMS-E-MAPLIMITORDBAD Error After Using ALTER DATABASE ... DROP STORAGE AREA ... CASCADE
	2.2.11 IMPORT DATABASE Statement Was Ignoring NOTIFY IS DISABLED Clause
	2.2.12 Unexpected RDB-E-INVALID_BLR Error Produced When ALTERNATE_OUTLINE_ID Is Active

	2.3 RMU Errors Fixed
	2.3.1 RMU/VERIFY/NOROOT Access Violation Verifying Client Sequences
	2.3.2 Missing Delimiters in Definitions Generated by RMU Extract
	2.3.3 Unexpected ACCVIO from RMU Load When Constraint=DEFERRED is Used
	2.3.4 RMU Did Not Sufficiently Verify the Database LOGFIL Structure
	2.3.5 RMU/BACKUP/ONLINE/NOQUIET Did Not Backup the Root Log File Entries
	2.3.6 Unexpected RMU-F-NOSNAPS Error From RMU Collect Optimizer_Statistics
	2.3.7 Encrypted Parallel Backup Files Could Not Be Restored Or Dumped
	2.3.8 Character Set Restriction on ORDER_BY_NAME Option Has Been Removed
	2.3.9 RMU/DUMP/BACKUP Could Output Invalid Data Page TSN Numbers
	2.3.10 RMU/BACKUP/PARALLEL/DISK_FILE Problem Expanding Directory Specifications
	2.3.11 The RMU/BACKUP/PLAN/LIST_PLAN Command Created an Invalid Backup Plan File
	2.3.12 Script Generated by RMU Extract Has Syntax Error in ALERT OPERATOR Clause
	2.3.13 RMU/LOAD Sometimes Stores Records In Overflow Partition

	2.4 RMU Show Statistics Errors Fixed
	2.4.1 RMU/SHOW STATISTICS (TRANSACTION DURATION (TOTAL)) Playback Generates a Bugcheck
	2.4.2 %SMG-F-INVROW in RMU/SHOW STAT Using Option WRITE REPORT GRAPH or WRITE BOTH
	2.4.3 Unable to Start RMU/SHOW STATISTICS During Cluster State Transition
	2.4.4 Unexpected Bugcheck Dump From RMU/SHOW STATISTICS/HOT_STANDBY_LOG
	2.4.5 Problem Viewing RMU/SHOW STATISTICS 'LOGMINER INFORMATION' Screen

	Chapter 3Software Errors Fixed in Oracle Rdb Release 7.2.5.2
	3.1 Software Errors Fixed That Apply to All Interfaces
	3.1.1 Orphan LIST Segments on Integrity Systems
	3.1.2 Query With LIKE Clause Executes the Conjunct Twice
	3.1.3 Query With Zigzag Match Strategy Returns Wrong Result
	3.1.4 Zig-zag Query With Mapping Values Index Returns Wrong Result
	3.1.5 Query Bugchecks With MAX, MIN or COUNT
	3.1.6 Query Bugchecks When the Index is Partitioned With Descending Segment

	3.2 SQL Errors Fixed
	3.2.1 Unexpected SQL-F-PARSE_STACK_OVE Error On Repeated CREATE VIEW Statements
	3.2.2 Unexpected ARITH_EXCEPT When Using STDDEV Aggregate Function
	3.2.3 Unexpected Bugcheck When REVOKE Used on a Table With an IDENTITY Column
	3.2.4 Unexpected RDB-E-NOT_VALID Error From ALTER TABLE ... ADD COLUMN
	3.2.5 Unexpected Partition Chosen When Malformed Storage Map Created
	3.2.6 Workload and Storage Statistics Not Cleared by TRUNCATE TABLE

	3.3 RDO and RDML Errors Fixed
	3.3.1 GET DIAGNOSTICS Did Not Return a Valid IMAGE_NAME in Some Cases

	3.4 RMU Errors Fixed
	3.4.1 RMU/BACKUP/PLAN Displays Too Vague Message When RMU_SERVICE Is Not Running
	3.4.2 RMU/RECOVER/ORDER_AIJ_FILES Error Handling Problem When Ordering Files
	3.4.3 RMU/BACKUP/PARALLEL Deadlock and Bugcheck With Access Violation
	3.4.4 RMU/BACKUP/PARALLEL Plan Name Length Parsing Errors
	3.4.5 Unexpected Bugcheck When Using RMU Collect Optimizer_Statistics
	3.4.6 Unexpected RECDEFSYN From RMU Unload
	3.4.7 Unexpected Reset of RECORD LENGTH in AIP After RMU Repair Initialize=TSN Command
	3.4.8 RMU/REPAIR/INITIALIZE=TSN Fails With SYSTEM-F-ACCVIO and Bugchecks
	3.4.9 New Details for Space Management Output From RMU Dump Header
	3.4.10 New Option POSITION_COLUMN Added to RMU Extract
	3.4.11 RMU/VERIFY/LAREA Access Violation if Invalid Logical Area Id Specified
	3.4.12 RMU/BACKUP/LIBRARIAN Ignored Specified Block Sizes Over 32256
	3.4.13 RMU/RESTORE/ONLY_ROOT Did Not Support the /ENCRYPT Qualifier
	3.4.14 RdbALTER Documented Syntax LOCKED_SPACE Returned a Syntax Error
	3.4.15 RMU/REPAIR/INIT=TSN Does Not Initialize Snapshots

	3.5 RMU Show Statistics Errors Fixed
	3.5.1 RMU/SHOW STATISTICS/CLUSTER Did Not Show Transaction Type
	3.5.2 RMU Show Statistics Not Using the Full Screen Size for Details

	3.6 Hot Standby Errors Fixed
	3.6.1 Checksum Errors on Database Replication Between VMS IA64 and Alpha

	Chapter 4Software Errors Fixed in Oracle Rdb Release 7.2.5.1
	4.1 Software Errors Fixed That Apply to All Interfaces
	4.1.1 Unexpected Memory Allocation Failure When Accessing Remote Database
	4.1.2 Alignment Faults on Itanium Using Multiple Mapped Index Columns
	4.1.3 Problem Writing Large TSN Values to Data and Snap Pages
	4.1.4 Query With Complex Shared OR Predicates Returns Wrong Result
	4.1.5 Query With Shared OR Predicates Returns Wrong Result
	4.1.6 Query With LSS, LEQ and NOT NULL Predicate Returns Wrong Result on Itanium System
	4.1.7 SQLSRV-E-PWDEXPIRED Error Restored
	4.1.8 Incorrect Results on IA64 using Partitioned Descending Index
	4.1.9 Unexpected Failure When Identity Sequence is Not Granted Access
	4.1.10 LIMIT TO/ORDER BY Query With OR Predicate Returns Wrong Result

	4.2 SQL Errors Fixed
	4.2.1 THRESHOLDS Clause Not Applied to Default LIST Storage by CREATE STORAGE MAP Statement
	4.2.2 Some CHARACTER SET Clauses Ignored by IMPORT DATABASE Statement
	4.2.3 Unexpected Bugcheck From DROP INDEX or ALTER INDEX Statements
	4.2.4 Unexpected Error When Both LIKE and COMPRESSION Used in CREATE TABLE Statement
	4.2.5 Wrong Results When UNION Mixed With EXCEPT, MINUS or INTERSECT
	4.2.6 Unexpected Error When Defining Trigger With INSERT ... DEFAULT VALUES Clause
	4.2.7 Unexpected Bugcheck When Declaring a Local Temporary Table With the Same Name as a System Table

	4.3 RMU Errors Fixed
	4.3.1 RMU Extract Did Not Propagate Domain Attributes
	4.3.2 RMU/RECOVER Consistency Bugcheck When Fetching a SPAM Page
	4.3.3 Problems If a Full RMU/BACKUP Was Not Done After RMU/MOVE_AREA
	4.3.4 Parallel Incremental Backup RMU-F-NOFULLBCK Error Handling Problem
	4.3.5 Problem with RMU/REPAIR/INIT=TSNS When TSNs Exceed 4,294,967,295
	4.3.6 Incorrect RMU/BACKUP/AFTER Truncate AIJ File Error Handling
	4.3.7 Unexpected RMU-W-DATNOTIDX Reported by RMU Verify for Rdb$WORKLOAD Table

	4.4 LogMiner Errors Fixed
	4.4.1 RMU/UNLOAD/AFTER_JOURNAL SYSTEM-W-ENDOFFILE Error on a Work File

	4.5 RMU Show Statistics Errors Fixed
	4.5.1 RMU/SHOW STATISTICS Configuration File Problems in Oracle Rdb Release 7.2.5.0
	4.5.2 RMU/SHOW STATISTICS Release 7.2.5.0 Hot Row Information Screen %SYSTEM-F-ACCVIO
	4.5.3 Unexpected Failure in COSI_MEM_FREE_VMLIST When Using RMU Show Statistics
	4.5.4 Invalid Average Transaction Duration Value Displayed When Using RMU Show Statistics
	4.5.5 RMU Show Statistics Sometimes Bugchecks When Using Process Monitoring
	4.5.6 RMU Show Statistics Sometimes Bugchecks on Row Cache Information Screen

	Chapter 5Software Errors Fixed in Oracle Rdb Release 7.2.5
	5.1 Software Errors Fixed That Apply to All Interfaces
	5.1.1 Server Process Name Format Changed
	5.1.2 Drop Storage Area Cascade Failed With Lock On Unrelated Area
	5.1.3 Temporary File Names
	5.1.4 Incorrect Storage Area Selected In Cluster
	5.1.5 Unexpected SYSTEM-F-VA_NOTPAGALGN Error With Global Buffers and Reserved Memory Registry
	5.1.6 Unexpected Bugcheck at RDMS$$PARSE_INTCOM_BUFFER Which Reports "Obsolete Version of Database"
	5.1.7 RDBPRE Precompiler RUNTIMSTK Informational Message From MACRO Compiler
	5.1.8 Bugcheck At RUJUTL$ROLLBACK_LOOP
	5.1.9 ALTER TABLE Fails With Constraint Violation
	5.1.10 Increased Default for RDMS$BIND_WORK_VM and Relocation of Related VM Buffer to P2 Virtual Address Space
	5.1.11 Full Outer Join Query Returns Wrong Column Values When Outer Table is Empty
	5.1.12 Reduction in Use of Rdb Executive Sort P0 Address Space
	5.1.13 Attaching to Rdb at Remote Site Stalls
	5.1.14 Increased Default Use of "Quick Sort"
	5.1.15 Bugcheck While In PSII2INSERTDUPBBC
	5.1.16 Divide Operator Now Returns DOUBLE PRECISION Results Rather than REAL
	5.1.17 Unexpected Results From IN Clause on a Subselect Containing FETCH FIRST or LIMIT TO
	5.1.18 Translation From HEX Character Set is Incorrect
	5.1.19 Nested Query With Left Outer Join and GROUP BY Bugchecks During Query Compilation
	5.1.20 Query With Nested Left Outer Join Bugchecks With Floating Overflow
	5.1.21 DBR Process Waiting for RMS Lock While Adding Process Rights
	5.1.22 DBR Bugcheck at RUJUTL$ROLLBACK_LOOP + 00000760
	5.1.23 Rdb Monitor Log File Write Rate Reduced
	5.1.24 Memory Layout Change For Global Section
	5.1.25 CONCAT on Operands of Same Datatype and Same Size Bugchecks
	5.1.26 SQLSRV-E-PWDEXPIRED Error Restored
	5.1.27 Query Returns Wrong Result and Bugchecks at Exit Using Bitmapped Scan
	5.1.28 Query Runs Very Slow When Using Bitmapped Scan
	5.1.29 Query With "NOT (conj1 OR conj2 OR conj3)" Predicate Bugchecks
	5.1.30 Query Returns Wrong Results Using Bitmap Scan With Zigzag Match
	5.1.31 Query With Over 26 Million Rows Slows Down

	5.2 SQL Errors Fixed
	5.2.1 Unexpected Bugcheck When Using INSERT ... SELECT Into a View
	5.2.2 Warning Now Issued for Unsupported Character Operations
	5.2.3 Incorrect Results From LIKE ... IGNORE CASE
	5.2.4 Unexpected ACCVIO When Using Dynamic DECLARE Cursor Statement
	5.2.5 Incorrect Value Returned By RETURNING Clause of the INSERT Statement
	5.2.6 Unexpected Failure When Adding IDENTITY Columns
	5.2.7 Unexpected Bugcheck Dump Produced When UNION and GROUP BY Are Used
	5.2.8 SET EXECUTE Now Implicitly Executed When ROLLBACK Question Is Asked
	5.2.9 Unexpected Bugcheck When Accessing View Changed Using the ALTER VIEW Statement
	5.2.10 Unexpected CAPTIVEACCT Error When Using Spawn Directive in Interactive SQL for RESTRICTED Accounts
	5.2.11 Unexpected NOTRIGRTN Error When Trigger Calls a Procedure Using LOCK TABLE Statement
	5.2.12 Unexpected Bugchecks When Some Undocumented Syntax Used
	5.2.13 Unexpected Slow Performance for Query Using SQL Functions

	5.3 RDO and RDML Errors Fixed
	5.3.1 Duplicate Values Generated For IDENTITY Column When RDO Interface Used For STORE

	5.4 RMU Errors Fixed
	5.4.1 RMU/UNLOAD to XML Does Not Replace Special Characters
	5.4.2 RMU/RESTORE Could Fail When /BLOCKS_PER_PAGE Was Specified
	5.4.3 An Incremental Instead Of a Full Backup Could Corrupt a Database
	5.4.4 RMU/BACKUP/AFTER Invalid Open Record With Emergency AIJ Files
	5.4.5 RMU/COLLECT OPTIMIZER Invalid Cardinality With Vertical Record Partitioning
	5.4.6 RMU /RECOVER /ORDER_AIJ May Remove Required Journal Files
	5.4.7 RMU/CONVERT Fails to Convert Databases With Database-wide Collating Sequence
	5.4.8 RMU/CONVERT/NOCOMMIT Did Not Call "Fix Up" Routine at End of Conversion
	5.4.9 Problems Validating Files Specified in the "/AIJ_OPTIONS" File
	5.4.10 RMU Online Backup May Store TSNs of Zero
	5.4.11 RMU/SET AFTER/AIJ_OPTIONS RMU-F-VALLSMIN Error If "RESERVE 0"
	5.4.12 RMU/BACKUP/PARALLEL/RESTORE_OPTIONS Was Not Fully Supported

	5.5 LogMiner Errors Fixed
	5.5.1 RMU/UNLOAD/AFTER_JOURNAL /STATISTICS With /OUTPUT Information Display

	5.6 Row Cache Errors Fixed
	5.6.1 Row Caching Remains Unexpectedly Disabled for a Newly Added Storage Area

	5.7 RMU Show Statistics Errors Fixed
	5.7.1 Stall Statistics (Aggregate Count) In RMU /SHOW STATISTICS Inaccurate
	5.7.2 Unexpected ACCVIO When Using RMU/SHOW STATISTICS

	Chapter 6Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.3
	6.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.3
	6.1.1 SQL Now Supports SQL Standard Syntax for SET CONSTRAINTS ALL
	6.1.2 New RMU/DUMP/BACKUP Enhanced Error Handling Features
	6.1.3 RMU/DUMP/BACKUP Now Dumps Plan File Parameters for Parallel Backups

	Chapter 7Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.2
	7.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.2
	7.1.1 New Prefix Added to Logical Name Created by the Log Recovery Server
	7.1.2 Information Tables Updated
	7.1.3 RMU/RESTORE/ONLY_ROOT Now Supports the /ENCRYPT Qualifier
	7.1.4 New Option POSITION_COLUMN Added to RMU Extract

	Chapter 8Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.1
	8.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.1
	8.1.1 New RMU Options File to Modify the Row Cache Backing Store Directories
	8.1.2 New RMU/REPAIR Options File to Initialize Database Snapshot Files
	8.1.3 RDMSTT Image Optionally Installed
	8.1.4 RMU Show Statistics Now Includes New Rdb Executive Statistics

	Chapter 9Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.0
	9.1 Enhancements And Changes Provided in Oracle Rdb Release 7.2.5.0
	9.1.1 RMU /SHOW STATISTICS /ROWS= and /COLUMNS= Feature
	9.1.2 New LIMIT Clauses Implemented for the CREATE and ALTER PROFILE Statement
	9.1.3 Use of RMS MBC Larger Than 127
	9.1.4 New Optimizations for the LIKE Predicate
	9.1.5 Additional Database Storage Area Checks
	9.1.6 New Optimizations for the STARTING WITH Predicate
	9.1.7 New Optimizations for the CONTAINING Predicate
	9.1.8 Monitor Memory Management Enhancements
	9.1.9 Average Transaction Duration Display Precision Increased
	9.1.10 Support for New CONCAT_WS Builtin Function
	9.1.11 New SYSTIMESTAMP Function Added
	9.1.12 New SET FLAGS Keyword to Control Optimizer Query Rewrite
	9.1.13 New SYS_GUID Function Added
	9.1.14 New COMPRESSION Clause for DECLARE LOCAL TEMPORARY TABLE Statement
	9.1.15 New COMPRESSION Clause for CREATE TABLE Statement
	9.1.16 Support for 2 TiB Storage Area Files
	9.1.17 New RMU/ALTER Feature to Modify the Root and Area Header Unique Identifier
	9.1.18 New MATCHING Predicate
	9.1.19 New RMU/BACKUP-RESTORE Feature to Check Database Page Integrity
	9.1.20 New RMU/DUMP/BACKUP /AREA, /START and /END Qualifiers
	9.1.21 Reduced CPU Usage and Improved Performance
	9.1.22 New Logical Name to Control Sizing of LIST OF BYTE VARYING Pointer Segments
	9.1.23 RMU /BACKUP Performance Improvements
	9.1.24 New RMU/BACKUP/ENCRYPT "%RMU-I-ENCRYPTUSED" Message Added
	9.1.25 New DATABASE_HANDLE Option for the GET DIAGNOSTICS Statement
	9.1.26 New SYS_GET_DIAGNOSTIC Function Supported for SQL
	9.1.27 Improved Error Handling for Database Disk Backup File Sets

	Chapter 10Documentation Corrections, Additions and Changes
	10.1 Documentation Corrections
	10.1.1 Oracle Rdb Release 7.2.x.x New Features Document Added
	10.1.2 RMU Replicate On-Line Help Reports Incorrect Maximum Checkpoint Value for Configure Qualifier
	10.1.3 Missing or Incorrect Documentation for SET AUTOMATIC TRANSLATION Command
	10.1.4 Required Privileges for AUTHORIZATION Clause of CREATE MODULE
	10.1.5 ROUND and TRUNC Are Built In Functions for SQL
	10.1.6 Missing Documentation for CREATE OUTLINE Statement
	10.1.7 Sorting Capabilities in Oracle Rdb
	10.1.8 RMU /SET ROW_CACHE Command Updates
	10.1.9 Documentation for the DEBUG_OPTIONS Qualifier of RMU Unload
	10.1.10 SQL$MSGxx.DOC Is Not Alphabetical
	10.1.11 LOCK_TIMEOUT Documentation Error in RMU Reference Manual Release 7.2
	10.1.12 Revised Example for SET OPTIMIZATION LEVEL Statement
	10.1.13 RMU /VERIFY Process Quotas and Limits Clarification
	10.1.14 Online Backup Can Be Performed With Transfer Via Memory
	10.1.15 Missing Example for CREATE STORAGE MAP
	10.1.16 RDM$BIND_MAX_DBR_COUNT Documentation Clarification
	10.1.17 Database Server Process Priority Clarification
	10.1.18 Explanation of SQL$INT in a SQL Multiversion Environment and How to Redefine SQL$INT
	10.1.19 Clarification of PREPARE Statement Behavior
	10.1.20 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter
	10.1.21 Missing Tables Descriptions for the RDBEXPERT Collection Class
	10.1.22 Missing Columns Descriptions for Tables in the Formatted Database

	10.2 Address and Phone Number Correction for Documentation
	10.3 Online Document Format and Ordering Information
	Chapter 11Known Problems and Restrictions
	11.1 Known Problems and Restrictions in All Interfaces
	11.1.1 Aggregate Query With Filter Predicates Returns Wrong Result
	11.1.2 Session Crash if Run Time Routine Native Compiler Enabled
	11.1.3 Possible Incorrect Results When Using Partitioned Descending Indexes
	11.1.4 Remote Attach Stalls Before Detecting a Node is Unreachable
	11.1.5 Case Sensitive Values in RDB$CLIENT_DEFAULTS.DAT
	11.1.6 Standalone WITH Clause in Compound Statements Now Deprecated
	11.1.7 Calling DECC$CRTL_INIT
	11.1.8 Application and Oracle Rdb Both Using SYS$HIBER
	11.1.9 Unexpected RCS Termination
	11.1.10 Possible Incorrect Results When Using Partitioned Descending Indexes on I64
	11.1.11 Changes for Processing Existence Logical Names
	11.1.12 Patch Required When Using VMS V8.3 and Dedicated CPU Lock Manager
	11.1.13 SQL Module or Program Fails with %SQL-F-IGNCASE_BAD
	11.1.14 External Routine Images Linked with PTHREAD$RTL
	11.1.15 Using Databases from Releases Earlier than V7.0
	11.1.16 Partitioned Index with Descending Column and Collating Sequence
	11.1.17 Domain-Qualified TCP/IP Node Names in Distributed Transactions
	11.1.18 ILINK-E-INVOVRINI Error on I64
	11.1.19 New Attributes Saved by RMU/LOAD Incompatible With Prior Versions
	11.1.20 SYSTEM-F-INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED in Galaxy Environment
	11.1.21 Oracle Rdb and OpenVMS ODS-5 Volumes
	11.1.22 Optimization of Check Constraints
	11.1.23 Carryover Locks and NOWAIT Transaction Clarification
	11.1.24 Unexpected Results Occur During Read-Only Transactions on a Hot Standby Database
	11.1.25 Row Cache Not Allowed While Hot Standby Replication is Active
	11.1.26 Excessive Process Page Faults and Other Performance Considerations During Oracle Rdb Sorts
	11.1.27 Control of Sort Work Memory Allocation
	11.1.28 The Halloween Problem

	11.2 SQL Known Problems and Restrictions
	11.2.1 SET FLAGS CRONO_FLAG Removed
	11.2.2 Interchange File (RBR) Created by Oracle Rdb Release 7.2 Not Compatible With Previous Releases
	11.2.3 Single Statement LOCK TABLE is Not Supported for SQL Module Language and SQL Precompiler
	11.2.4 Multistatement or Stored Procedures May Cause Hangs
	11.2.5 Use of Oracle Rdb from Shareable Images

	11.3 Oracle RMU Known Problems and Restrictions
	11.3.1 RMU Convert Fails When Maximum Relation ID is Exceeded
	11.3.2 RMU Unload /After_Journal Requires Accurate AIP Logical Area Information
	11.3.3 Do Not Use HYPERSORT with RMU Optimize After_Journal Command
	11.3.4 Changes in EXCLUDE and INCLUDE Qualifiers for RMU Backup
	11.3.5 RMU Backup Operations Should Use Only One Type of Tape Drive
	11.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors

	11.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier
	11.4.1 Converting Single-File Databases
	11.4.2 Row Caches and Exclusive Access
	11.4.3 Exclusive Access Transactions May Deadlock with RCS Process
	11.4.4 Strict Partitioning May Scan Extra Partitions
	11.4.5 Restriction When Adding Storage Areas with Users Attached to Database
	11.4.6 Multiblock Page Writes May Require Restore Operation
	11.4.7 Replication Option Copy Processes Do Not Process Database Pages Ahead of an Application

	11.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier
	11.5.1 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
	11.5.2 Different Methods of Limiting Returned Rows from Queries
	11.5.3 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation
	11.5.4 Side Effect When Calling Stored Routines
	11.5.5 Considerations When Using Holdable Cursors
	11.5.6 AIJSERVER Privileges

